論文の概要: TreeGCN-ED: Encoding Point Cloud using a Tree-Structured Graph Network
- arxiv url: http://arxiv.org/abs/2110.03170v1
- Date: Thu, 7 Oct 2021 03:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-09 05:58:01.676818
- Title: TreeGCN-ED: Encoding Point Cloud using a Tree-Structured Graph Network
- Title(参考訳): TreeGCN-ED:木構造グラフネットワークを用いたポイントクラウドの符号化
- Authors: Prajwal Singh, Kaustubh Sadekar, Shanmuganathan Raman
- Abstract要約: この研究は、ポイントクラウドのための堅牢な埋め込みを生成するオートエンコーダベースのフレームワークを提案する。
3Dポイントクラウド補完やシングルイメージベースの3D再構成といったアプリケーションにおいて,提案フレームワークの適用性を示す。
- 参考スコア(独自算出の注目度): 24.299931323012757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud is an efficient way of representing and storing 3D geometric
data. Deep learning algorithms on point clouds are time and memory efficient.
Several methods such as PointNet and FoldingNet have been proposed for
processing point clouds. This work proposes an autoencoder based framework to
generate robust embeddings for point clouds by utilizing hierarchical
information using graph convolution. We perform multiple experiments to assess
the quality of embeddings generated by the proposed encoder architecture and
visualize the t-SNE map to highlight its ability to distinguish between
different object classes. We further demonstrate the applicability of the
proposed framework in applications like: 3D point cloud completion and Single
image based 3D reconstruction.
- Abstract(参考訳): ポイントクラウドは3次元幾何学データを表現し保存する効率的な方法である。
ポイントクラウド上のディープラーニングアルゴリズムは時間とメモリ効率がよい。
PointNetやFoldingNetといったいくつかの手法がポイントクラウドの処理のために提案されている。
本稿では,グラフ畳み込みを用いた階層情報を利用して,点群へのロバスト埋め込みを生成する自動エンコーダベースのフレームワークを提案する。
提案するエンコーダアーキテクチャによって生成された埋め込みの質を評価するために複数の実験を行い、t-SNEマップを可視化し、異なるオブジェクトクラスを区別する能力を強調する。
さらに,提案フレームワークの適用性についても実証する。3dポイントクラウド補完および1画像ベース3d再構成。
関連論文リスト
- Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
本稿では,識別可能なニューラルエンコーダによる点雲表現の自己教師型学習手法を提案する。
学習したポイントクラウドは、3D検出やセグメンテーションといったハイレベルなレンダリングタスクだけでなく、3D再構成や画像レンダリングといった低レベルなタスクを含む、さまざまなダウンストリームタスクに簡単に統合できる。
論文 参考訳(メタデータ) (2022-12-31T08:58:39Z) - Explaining Deep Neural Networks for Point Clouds using Gradient-based
Visualisations [1.2891210250935146]
本研究では,非構造化3次元データの分類を目的としたネットワークの粗い視覚的説明を生成する手法を提案する。
提案手法では,最終特徴写像層に逆流する勾配を用いて,これらの値を入力点クラウド内の対応する点の寄与としてマップする。
このアプローチの汎用性は、シングルオブジェクトネットワークのPointNet、PointNet++、DGCNN、a'scene'ネットワークのVoteNetなど、さまざまなポイントクラウド分類ネットワークでテストされている。
論文 参考訳(メタデータ) (2022-07-26T15:42:08Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
本稿では,複数の視点から抽出した特徴の集合として,各3次元点を表す多視点クラウド(Voint Cloud)の概念を紹介する。
この新しい3次元Vointクラウド表現は、3Dポイントクラウド表現のコンパクト性と、マルチビュー表現の自然なビュー認識性を組み合わせたものである。
理論的に確立された機能を持つVointニューラルネットワーク(VointNet)をデプロイし,Voint空間の表現を学習する。
論文 参考訳(メタデータ) (2021-11-30T13:08:19Z) - PnP-3D: A Plug-and-Play for 3D Point Clouds [38.05362492645094]
本稿では,既存ネットワークのポイントクラウドデータ解析における有効性を改善するために,プラグイン・アンド・プレイモジュール -3D を提案する。
アプローチを徹底的に評価するために,3つの標準的なクラウド分析タスクについて実験を行った。
本研究は,最先端の成果の達成に加えて,我々のアプローチのメリットを実証する包括的研究を提案する。
論文 参考訳(メタデータ) (2021-08-16T23:59:43Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDescは、ロバストポイントクラウド登録のためのポイント記述子を学習するための教師なしの方法である。
学習した記述子は既存の教師なし手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-08-05T17:11:08Z) - Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification [35.88116404702807]
MRFGATアーキテクチャはModelNet10とModelNet40データセットでテストされている。
その結果,形状分類作業における最先端性能が得られた。
論文 参考訳(メタデータ) (2020-09-28T13:01:28Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z) - Learning to Segment 3D Point Clouds in 2D Image Space [20.119802932358333]
2次元画像空間に3次元点雲を効率よく投影する方法を示す。
U-Netのような従来の2D畳み込みニューラルネットワーク(CNN)はセグメンテーションに適用できる。
論文 参考訳(メタデータ) (2020-03-12T03:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。