論文の概要: Artificial Intelligence in the Creative Industries: A Review
- arxiv url: http://arxiv.org/abs/2007.12391v6
- Date: Fri, 2 Jul 2021 11:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 05:56:23.456061
- Title: Artificial Intelligence in the Creative Industries: A Review
- Title(参考訳): 創造産業における人工知能 : レビュー
- Authors: Nantheera Anantrasirichai and David Bull
- Abstract要約: 本稿では,創造産業の文脈における人工知能(AI)技術と応用の現状を概観する。
私たちはクリエイティブなアプリケーションを、AIテクノロジの使用方法に関連する5つのグループに分類します。
これらの分野において、この急速に進歩する技術の成功と限界について検討する。
- 参考スコア(独自算出の注目度): 2.657505380055164
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper reviews the current state of the art in Artificial Intelligence
(AI) technologies and applications in the context of the creative industries. A
brief background of AI, and specifically Machine Learning (ML) algorithms, is
provided including Convolutional Neural Network (CNNs), Generative Adversarial
Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement
Learning (DRL). We categorise creative applications into five groups related to
how AI technologies are used: i) content creation, ii) information analysis,
iii) content enhancement and post production workflows, iv) information
extraction and enhancement, and v) data compression. We critically examine the
successes and limitations of this rapidly advancing technology in each of these
areas. We further differentiate between the use of AI as a creative tool and
its potential as a creator in its own right. We foresee that, in the near
future, machine learning-based AI will be adopted widely as a tool or
collaborative assistant for creativity. In contrast, we observe that the
successes of machine learning in domains with fewer constraints, where AI is
the `creator', remain modest. The potential of AI (or its developers) to win
awards for its original creations in competition with human creatives is also
limited, based on contemporary technologies. We therefore conclude that, in the
context of creative industries, maximum benefit from AI will be derived where
its focus is human centric -- where it is designed to augment, rather than
replace, human creativity.
- Abstract(参考訳): 本稿では,創造産業の文脈における人工知能(AI)技術と応用の現状を概観する。
ai、特に機械学習(ml)アルゴリズムの簡単な背景には、畳み込みニューラルネットワーク(cnns)、生成敵ネットワーク(gans)、リカレントニューラルネットワーク(rnns)、深層強化学習(drl)が含まれる。
私たちはクリエイティブなアプリケーションを、AI技術の使用方法に関連する5つのグループに分類します。
i) コンテンツの作成
ii) 情報分析
三 コンテンツの充実及び生産後のワークフロー
四 情報抽出及び強化及び
v) データ圧縮。
我々は、これらの分野におけるこの急速に進歩する技術の成功と限界について批判的に検討する。
創造的なツールとしてのAIの使用と、創造的なツールとしての潜在能力とを、私たちはさらに区別しています。
近い将来、機械学習ベースのAIは、創造性のためのツールや共同アシスタントとして広く採用されるでしょう。
対照的に、AIが‘創造者’であるような制約の少ない領域での機械学習の成功は、控えめなままである。
AI(あるいはその開発者)が、人間の創造と競合するオリジナルの創造物に対して受賞する可能性も、現代の技術に基づいて制限されている。
それゆえ、創造的産業の文脈では、aiによる最大限の利益は、その焦点が人間中心であり、人間の創造性を置き換えるのではなく、強化するように設計された場所でもたらされる、と結論づける。
関連論文リスト
- Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
本研究は創造性と人工知能(AI)の概念を探求する。
より洗練されたAIモデルの開発と人間とコンピュータの相互作用ツールの普及により、芸術的創造におけるAIの新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-06-01T12:28:08Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
生成AI(英: Generative AI)とは、テキストのプロンプトに基づいて視覚的または書き起こされたコンテンツを自動生成する一連の技術で、複雑さが飛躍的に増加し、わずか数年で広く利用できるようになる技術である。
本稿では,創造的プロフェッショナルが生成AIをどのように考えるかに関する質的研究の結果を報告する。
論文 参考訳(メタデータ) (2023-03-15T20:57:03Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Artificial Intelligence for the Metaverse: A Survey [66.57225253532748]
まず、機械学習アルゴリズムやディープラーニングアーキテクチャを含むAIの予備と、メタバースにおけるその役割について紹介する。
次に、メタバースの可能性を秘めた6つの技術的側面に関するAIベースの手法に関する包括的調査を行う。
医療、製造業、スマートシティ、ゲームなどのAI支援アプリケーションは、仮想世界に展開するために研究されている。
論文 参考訳(メタデータ) (2022-02-15T03:34:56Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Creativity in the era of artificial intelligence [1.8275108630751844]
我々は、社会科学と計算科学のフロンティアを曖昧にすることで、AI時代の創造性に関する新たな視点を提供することを目指している。
我々は、自己完結した元ニヒロ生成機械に対して、人間の創造的特性を純粋に模倣しようとする目的は、非常に反生産的であろうと論じる。
論文 参考訳(メタデータ) (2020-08-13T15:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。