論文の概要: Grasping AI: experiential exercises for designers
- arxiv url: http://arxiv.org/abs/2310.01282v1
- Date: Mon, 2 Oct 2023 15:34:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 21:11:28.149689
- Title: Grasping AI: experiential exercises for designers
- Title(参考訳): Grasping AI:デザイナのための経験的なエクササイズ
- Authors: Dave Murray-Rust, Maria Luce Lupetti, Iohanna Nicenboim, Wouter van
der Hoog
- Abstract要約: 本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
- 参考スコア(独自算出の注目度): 8.95562850825636
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Artificial intelligence (AI) and machine learning (ML) are increasingly
integrated into the functioning of physical and digital products, creating
unprecedented opportunities for interaction and functionality. However, there
is a challenge for designers to ideate within this creative landscape,
balancing the possibilities of technology with human interactional concerns. We
investigate techniques for exploring and reflecting on the interactional
affordances, the unique relational possibilities, and the wider social
implications of AI systems. We introduced into an interaction design course
(n=100) nine 'AI exercises' that draw on more than human design, responsible
AI, and speculative enactment to create experiential engagements around AI
interaction design. We find that exercises around metaphors and enactments make
questions of training and learning, privacy and consent, autonomy and agency
more tangible, and thereby help students be more reflective and responsible on
how to design with AI and its complex properties in both their design process
and outcomes.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)は、ますます物理的およびデジタル製品の機能に統合され、対話や機能に前例のない機会を生み出している。
しかし、デザイナーがこの創造的な風景の中で考え、技術の可能性と人間の相互作用の懸念のバランスをとることは困難である。
本稿では,AIシステムの相互作用能力,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する。
インタラクションデザインコース(n=100)9つの'AIエクササイズ'を導入し、人間設計、責任あるAI、投機的実践を駆使して、AIインタラクション設計に関する経験的な関与を生み出しました。
メタファーや制定に関する演習は、トレーニングや学習、プライバシ、同意、自律性、エージェンシーをより具体化し、学生がAIで設計し、その複雑な特性を設計プロセスと結果の両方でより反映し、責任を負うのを助ける。
関連論文リスト
- Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Agency and legibility for artists through Experiential AI [12.941266914933454]
Experiential AIは、AIを具体的で明示的なものにするという課題に対処する、新たな研究分野である。
本稿では,創造的データ探索を目的とした経験的AIシステムの実証事例について報告する。
実験的なAIがアーティストの妥当性とエージェンシーを高める方法について論じる。
論文 参考訳(メタデータ) (2023-06-04T11:00:07Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
本研究は創造性と人工知能(AI)の概念を探求する。
より洗練されたAIモデルの開発と人間とコンピュータの相互作用ツールの普及により、芸術的創造におけるAIの新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-06-01T12:28:08Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。