論文の概要: QuOp_MPI: a framework for parallel simulation of quantum variational
algorithms
- arxiv url: http://arxiv.org/abs/2110.03963v2
- Date: Tue, 7 Jun 2022 04:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-12 01:14:51.836873
- Title: QuOp_MPI: a framework for parallel simulation of quantum variational
algorithms
- Title(参考訳): quop_mpi:量子変分アルゴリズムの並列シミュレーションのためのフレームワーク
- Authors: Edric Matwiejew, Jingbo B. Wang
- Abstract要約: QuOp_MPIは、量子変分アルゴリズムの並列シミュレーション用に設計されたPythonパッケージである。
量子変分アルゴリズム設計におけるオブジェクト指向アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: QuOp_MPI is a Python package designed for parallel simulation of quantum
variational algorithms. It presents an object-orientated approach to quantum
variational algorithm design and utilises MPI-parallelised sparse-matrix
exponentiation, the fast Fourier transform and parallel gradient evaluation to
achieve the highly efficient simulation of the fundamental unitary dynamics on
massively parallel systems. In this article, we introduce QuOp_MPI and explore
its application to the simulation of quantum algorithms designed to solve
combinatorial optimisation algorithms including the Quantum Approximation
Optimisation Algorithm, the Quantum Alternating Operator Ansatz, and the
Quantum Walk-assisted Optimisation Algorithm.
- Abstract(参考訳): QuOp_MPIは、量子変分アルゴリズムの並列シミュレーション用に設計されたPythonパッケージである。
量子変分アルゴリズム設計に対するオブジェクト指向のアプローチを示し、超並列系における基本ユニタリダイナミクスの高効率なシミュレーションを実現するために、mpi並列スパース行列指数、高速フーリエ変換、並列勾配評価を用いる。
本稿では、量子近似最適化アルゴリズム、量子交互作用素 ansatz、量子ウォーク支援最適化アルゴリズムを含む組合せ最適化アルゴリズムを解くように設計された量子アルゴリズムのシミュレーションにその応用について検討する。
関連論文リスト
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Simulating Hamiltonian dynamics in a programmable photonic quantum
processor using linear combinations of unitary operations [4.353492002036882]
我々は,マルチプロデューサのトロッター化を改良し,斜め振幅増幅と組み合わせて,高いシミュレーション精度と高い成功確率を同時に達成する。
シリコンの集積フォトニクスプログラマブル量子シミュレータにおいて, 修正多積アルゴリズムを実験的に実装した。
論文 参考訳(メタデータ) (2022-11-12T18:49:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Optimizing the Phase Estimation Algorithm Applied to the Quantum
Simulation of Heisenberg-Type Hamiltonians [0.0]
位相推定アルゴリズムは、暗号、数論、量子システムのシミュレーションに応用された強力な量子アルゴリズムである。
このアルゴリズムを用いて、ハイゼンベルク・ハミルトニアンの下での2つのスピン-1/2粒子系の時間発展をシミュレートする。
アルゴリズムには円、反復、ベイジアンの3つの最適化を導入する。
論文 参考訳(メタデータ) (2021-05-07T21:41:08Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
本稿では,一方のランダム化コンパイルの利点と他方の高次多重積公式を結合した量子シミュレーション手法を提案する。
本フレームワークは,振幅増幅を回避し,回路深度を低減させる。
本アルゴリズムは回路深さとともに指数関数的に縮小するシミュレーション誤差を実現する。
論文 参考訳(メタデータ) (2021-01-19T19:00:23Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Approximating the quantum approximate optimization algorithm with
digital-analog interactions [0.0]
ディジタルアナログパラダイムは変分量子近似最適化アルゴリズムに適していることを示す。
我々は,変分アルゴリズムが非変分アルゴリズムよりも有意な改善をもたらす,単一キュービット演算速度のレギュレーションを観察する。
論文 参考訳(メタデータ) (2020-02-27T16:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。