Understanding and Improving Critical Metrology. Quenching Superradiant
Light-Matter Systems Beyond the Critical Point
- URL: http://arxiv.org/abs/2110.04048v3
- Date: Tue, 26 Apr 2022 11:44:46 GMT
- Title: Understanding and Improving Critical Metrology. Quenching Superradiant
Light-Matter Systems Beyond the Critical Point
- Authors: Karol Gietka, Lewis Ruks, and Thomas Busch
- Abstract summary: An improved critical quantum metrology protocol relies on quenching a system exhibiting a superradiant quantum phase transition beyond its critical point.
We show that this approach can lead to an exponential increase of the quantum Fisher information in time.
In this case an additional exponential enhancement of the quantum Fisher information can be observed with the number of atoms $N$ in the cavity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We carefully examine critical metrology and present an improved critical
quantum metrology protocol which relies on quenching a system exhibiting a
superradiant quantum phase transition beyond its critical point. We show that
this approach can lead to an exponential increase of the quantum Fisher
information in time with respect to existing critical quantum metrology
protocols relying on quenching close to the critical point and observing power
law behaviour. We demonstrate that the Cram\'er-Rao bound can be saturated in
our protocol through the standard homodyne detection scheme. We explicitly show
its advantage using the archetypal setting of the Dicke model and explore a
quantum gas coupled to a single-mode cavity field as a potential platform. In
this case an additional exponential enhancement of the quantum Fisher
information can in practice be observed with the number of atoms $N$ in the
cavity, even in the absence of $N$-body coupling terms.
Related papers
- Critical quantum metrology robust against dissipation and
non-adiabaticity [7.185507919945175]
A critical system near quantum phase transitions was predicted to be useful for improvement of metrological precision.
We show how to encode the signal to some physical quantity of a critical system using critical behaviors in the Jaynes-Cummings model.
We demonstrate such a metrological protocol in a superconducting circuit, where an Xmon qubit, interacting with a resonator, is used as a probe for estimating the amplitude of a microwave field.
arXiv Detail & Related papers (2024-03-07T13:19:41Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Exponential precision by reaching a quantum critical point [0.0]
We report a protocol that is capable of surpassing the quadratic scaling, and yields an exponential advantage.
The exponential advantage stems from the breakdown of the adiabatic condition close to a critical point.
Our findings unveil a novel quantum metrological protocol whose precision scaling goes beyond the paradigmatic Heisenberg limit.
arXiv Detail & Related papers (2021-12-21T14:46:33Z) - Criticality-Enhanced Quantum Sensing via Continuous Measurement [1.433758865948252]
We propose a protocol for criticality-enhanced sensing via continuous observation of the emitted radiation quanta.
We derive universal scaling laws featuring transient and long-time behavior governed by the underlying critical exponents.
Our protocol is applicable to generic quantum-optical open sensors permitting continuous readout.
arXiv Detail & Related papers (2021-08-13T18:01:02Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Scattering as a quantum metrology problem: a quantum walk approach [0.0]
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions.
We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier.
arXiv Detail & Related papers (2020-10-23T14:42:25Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.