MoFE: Mixture of Factual Experts for Controlling Hallucinations in
Abstractive Summarization
- URL: http://arxiv.org/abs/2110.07166v1
- Date: Thu, 14 Oct 2021 06:02:54 GMT
- Title: MoFE: Mixture of Factual Experts for Controlling Hallucinations in
Abstractive Summarization
- Authors: Prafulla Kumar Choubey, Jesse Vig, Wenhao Liu, Nazneen Fatema Rajani
- Abstract summary: Mixture of Factual Experts (MoFE) model combines multiple summarization experts that each target a specific type of error.
Experiments on BART models show that the MoFE improves performance according to both entity overlap and dependency arc entailment.
- Score: 18.464765966462135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural abstractive summarization models are susceptible to generating
factually inconsistent content, a phenomenon known as hallucination. This
limits the usability and adoption of these systems in real-world applications.
To reduce the presence of hallucination, we propose the Mixture of Factual
Experts (MoFE) model, which combines multiple summarization experts that each
target a specific type of error. We train our experts using reinforcement
learning (RL) to minimize the error defined by two factual consistency metrics:
entity overlap and dependency arc entailment. We construct MoFE by combining
the experts using two ensembling strategies (weights and logits) and evaluate
them on two summarization datasets (XSUM and CNN/DM). Our experiments on BART
models show that the MoFE improves performance according to both entity overlap
and dependency arc entailment, without a significant performance drop on
standard ROUGE metrics. The performance improvement also transfers to unseen
factual consistency metrics, such as question answer-based factuality
evaluation metric and BERTScore precision with respect to the source document.
Related papers
- Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models [24.64757529640278]
Cluster-driven Expert Pruning (C-Prune) is a novel two-stage framework for adaptive task-specific compression of large language models.
C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer.
We validate C-Prune through extensive experiments on multiple MoE models and benchmarks.
arXiv Detail & Related papers (2025-04-10T14:46:26Z) - A Unified Virtual Mixture-of-Experts Framework:Enhanced Inference and Hallucination Mitigation in Single-Model System [9.764336669208394]
Generative models, such as GPT and BERT, have significantly improved performance in tasks like text generation and summarization.
However, hallucinations "where models generate non-factual or misleading content" are especially problematic in smaller-scale architectures.
We propose a unified Virtual Mixture-of-Experts (MoE) fusion strategy that enhances inference performance and mitigates hallucinations in a single Qwen 1.5 0.5B model.
arXiv Detail & Related papers (2025-04-01T11:38:01Z) - Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.
Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.
We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
arXiv Detail & Related papers (2025-03-05T06:11:24Z) - Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.
This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.
We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.
To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - MixRec: Heterogeneous Graph Collaborative Filtering [21.96510707666373]
We present a graph collaborative filtering model MixRec to disentangling users' multi-behavior interaction patterns.
Our model achieves this by incorporating intent disentanglement and multi-behavior modeling.
We also introduce a novel contrastive learning paradigm that adaptively explores the advantages of self-supervised data augmentation.
arXiv Detail & Related papers (2024-12-18T13:12:36Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
We propose Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction (FENICE)
FENICE leverages an NLI-based alignment between information in the source document and a set of atomic facts, referred to as claims, extracted from the summary.
Our metric sets a new state of the art on AGGREFACT, the de-facto benchmark for factuality evaluation.
arXiv Detail & Related papers (2024-03-04T17:57:18Z) - FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion [29.130355774088205]
FuseMoE is a mixture-of-experts framework incorporated with an innovative gating function.
Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories.
arXiv Detail & Related papers (2024-02-05T17:37:46Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
We propose CLIPBERTScore to leverage the robustness and strong factuality detection performance between image-summary and document-summary.
We show that this simple combination of two metrics in the zero-shot achieves higher correlations than existing factuality metrics for document summarization.
Our analysis demonstrates the robustness and high correlation of CLIPBERTScore and its components on four factuality metric-evaluation benchmarks.
arXiv Detail & Related papers (2022-11-04T16:50:40Z) - Holistic Deep Learning [3.718942345103135]
This paper presents a novel holistic deep learning framework that addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability.
The proposed framework holistically improves accuracy, robustness, sparsity, and stability over standard deep learning models.
arXiv Detail & Related papers (2021-10-29T14:46:32Z) - Understanding Factuality in Abstractive Summarization with FRANK: A
Benchmark for Factuality Metrics [17.677637487977208]
Modern summarization models generate highly fluent but often factually unreliable outputs.
Due to the lack of common benchmarks, metrics attempting to measure the factuality of automatically generated summaries cannot be compared.
We devise a typology of factual errors and use it to collect human annotations of generated summaries from state-of-the-art summarization systems.
arXiv Detail & Related papers (2021-04-27T17:28:07Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.