論文の概要: Computing Semilinear Sparse Models for Approximately Eventually Periodic
Signals
- arxiv url: http://arxiv.org/abs/2110.08966v2
- Date: Tue, 19 Oct 2021 20:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-11 04:31:53.262257
- Title: Computing Semilinear Sparse Models for Approximately Eventually Periodic
Signals
- Title(参考訳): ほぼ終端周期信号に対する半線形スパースモデルの計算
- Authors: Fredy Vides
- Abstract要約: 離散時間信号に対する半線形スパースモデルの計算に対応する理論とアルゴリズムの要素について述べる。
我々は、ほぼ周期的な離散時間信号、すなわち、初期時間で周期的な振舞いを示し、その後にほぼ周期的な振舞いを示す信号に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some elements of the theory and algorithmics corresponding to the computation
of semilinear sparse models for discrete-time signals are presented. In this
study, we will focus on approximately eventually periodic discrete-time
signals, that is, signals that can exhibit an aperiodic behavior for an initial
amount of time, and then become approximately periodic afterwards. The
semilinear models considered in this study are obtained by combining sparse
representation methods, linear autoregressive models and GRU neural network
models, initially fitting each block model independently using some reference
data corresponding to some signal under consideration, and then fitting some
mixing parameters that are used to obtain a signal model consisting of a linear
combination of the previously fitted blocks using the aforementioned reference
data, computing sparse representations of some of the matrix parameters of the
resulting model along the process. Some prototypical computational
implementations are presented as well.
- Abstract(参考訳): 離散時間信号に対する半線形スパースモデルの計算に対応する理論とアルゴリズムのいくつかの要素を提示する。
本研究では, ほぼ周期的な離散時間信号, すなわち, 初期時間に周期的な振舞いを呈し, その後, ほぼ周期的になる信号に焦点をあてる。
The semilinear models considered in this study are obtained by combining sparse representation methods, linear autoregressive models and GRU neural network models, initially fitting each block model independently using some reference data corresponding to some signal under consideration, and then fitting some mixing parameters that are used to obtain a signal model consisting of a linear combination of the previously fitted blocks using the aforementioned reference data, computing sparse representations of some of the matrix parameters of the resulting model along the process.
原型計算の実装もいくつか提示されている。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Signal-Plus-Noise Decomposition of Nonlinear Spiked Random Matrix Models [28.005935031887038]
本研究では,非線形関数を次数1の雑音行列に応用した非線形スパイクランダム行列モデルについて検討する。
我々は,このモデルに対して信号+雑音分解を行い,信号成分の構造の正確な位相遷移を信号強度の臨界しきい値で同定する。
論文 参考訳(メタデータ) (2024-05-28T15:24:35Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Approximate Message Passing for the Matrix Tensor Product Model [8.206394018475708]
本稿では,行列テンソル積モデルに対する近似メッセージパッシング(AMP)アルゴリズムの提案と解析を行う。
非可分関数に対する収束定理に基づいて、非可分関数に対する状態発展を証明する。
我々は、この状態進化結果を利用して、関心の信号の回復に必要な十分な条件を提供する。
論文 参考訳(メタデータ) (2023-06-27T16:03:56Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models [31.58736590532443]
混合一般化線形モデルにおいて、統計的に独立な2つの信号を推定する問題を考える。
我々の特徴付けは、ランダム行列、自由確率、および近似メッセージパッシングアルゴリズムの理論からのツールの混合を利用する。
論文 参考訳(メタデータ) (2022-11-21T11:35:25Z) - Generative Principal Component Analysis [47.03792476688768]
生成的モデリング仮定を用いた主成分分析の問題点を考察する。
鍵となる仮定は、基礎となる信号は、$k$次元の入力を持つ$L$-Lipschitz連続生成モデルの範囲に近いことである。
本稿では,2次推定器を提案し,検体数として$m$の次数$sqrtfracklog Lm$の統計率を示す。
論文 参考訳(メタデータ) (2022-03-18T01:48:16Z) - Time Series Forecasting Using Manifold Learning [6.316185724124034]
本研究では,高次元時系列の予測のための多様体学習に基づく3層数値フレームワークを提案する。
最初のステップでは、非線形多様体学習アルゴリズムを用いて、時系列を低次元空間に埋め込む。
2番目のステップでは、埋め込み力学を予測するために、多様体上の低次回帰モデルを構築する。
最後のステップでは、埋め込み時系列を元の高次元空間に戻します。
論文 参考訳(メタデータ) (2021-10-07T17:09:59Z) - Graph Gamma Process Generalized Linear Dynamical Systems [60.467040479276704]
実マルチ変数時系列をモデル化するために,グラフガンマ過程(GGP)線形力学系を導入する。
時間的パターン発見のために、モデルの下での潜在表現は、時系列を多変量部分列の同相集合に分解するために使用される。
非零次ノード数が有限であるランダムグラフを用いて、潜時状態遷移行列の空間パターンと次元の両方を定義する。
論文 参考訳(メタデータ) (2020-07-25T04:16:34Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。