論文の概要: A-Optimal Active Learning
- arxiv url: http://arxiv.org/abs/2110.09585v1
- Date: Mon, 18 Oct 2021 19:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 14:03:47.582808
- Title: A-Optimal Active Learning
- Title(参考訳): A-Optimal Active Learning
- Authors: Tue Boesen, Eldad Haber
- Abstract要約: 部分的に探索することでデータセットを最適にラベル付けし、それを深層ネットワークのトレーニングに使用する方法を示す。
提案手法は,ラベルを推定し,ディープネットワークを訓練する上で極めて効率的であることを示す。
- 参考スコア(独自算出の注目度): 5.672898304129217
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work we discuss the problem of active learning. We present an
approach that is based on A-optimal experimental design of ill-posed problems
and show how one can optimally label a data set by partially probing it, and
use it to train a deep network. We present two approaches that make different
assumptions on the data set. The first is based on a Bayesian interpretation of
the semi-supervised learning problem with the graph Laplacian that is used for
the prior distribution and the second is based on a frequentist approach, that
updates the estimation of the bias term based on the recovery of the labels. We
demonstrate that this approach can be highly efficient for estimating labels
and training a deep network.
- Abstract(参考訳): 本稿では,アクティブラーニングの問題について議論する。
本稿では,不適切な問題の最適実験設計に基づくアプローチを示し,それを部分的に検出することでデータセットを最適にラベル付けし,深層ネットワークを訓練する方法を示す。
データセット上で異なる仮定を行う2つのアプローチを提案する。
1つは、事前分布に使用されるグラフラプラシアンの半教師付き学習問題のベイズ的解釈に基づいており、2つ目は、ラベルの回復に基づくバイアス項の推定を更新する頻繁なアプローチに基づいている。
このアプローチはラベルの推定や深層ネットワークのトレーニングに非常に効果的であることを実証する。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and
Data Attribution [67.28273187033693]
アモート化(amortization)と呼ばれる,所望の出力を直接予測するネットワークのトレーニングは安価で,驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - OTMatch: Improving Semi-Supervised Learning with Optimal Transport [2.4355694259330467]
我々はOTMatchと呼ばれる新しい手法を提案する。OTMatchはクラス間の意味的関係を利用して、最適輸送損失関数を用いて分布を一致させる。
実験結果から,本手法のベースライン上における改善が示され,半教師付き環境での学習性能向上に意味的関係を活用する上でのアプローチの有効性と優位性が示された。
論文 参考訳(メタデータ) (2023-10-26T15:01:54Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
我々は、より大きな確率関数のクラスに対する推論を行うことができるような、限界確率に対する新しい下界を導入する。
我々は、最後の層にガウス的プロセスを持つアーキテクチャを使用することで、このアプローチをニューラルネットワークに導入することに取り組んでいます。
論文 参考訳(メタデータ) (2021-06-14T15:40:51Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
ディープラーニングシステムの安全なデプロイには,トレーニング中に見られるものと異なる入力のカテゴリに直面した場合,確実な予測を控えることが重要な要件である。
本論文では, 吸収の原理を用いた分布異常検出の簡便かつ高効率な手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:46:11Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Toward Optimal Probabilistic Active Learning Using a Bayesian Approach [4.380488084997317]
アクティブラーニングは、コストの高いラベリングリソースを効率よく効果的に割り当てることで、ラベリングコストを削減することを目的としている。
提案したモデルにおける既存の選択戦略を再構築することにより、どの側面が現在の最先端に包含されていないかを説明することができる。
論文 参考訳(メタデータ) (2020-06-02T15:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。