論文の概要: On Parameter Estimation in Unobserved Components Models subject to
Linear Inequality Constraints
- arxiv url: http://arxiv.org/abs/2110.12149v1
- Date: Sat, 23 Oct 2021 05:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 18:19:13.736040
- Title: On Parameter Estimation in Unobserved Components Models subject to
Linear Inequality Constraints
- Title(参考訳): 線形不等式制約を受ける非観測成分モデルのパラメータ推定について
- Authors: Abhishek K. Umrawal, Joshua C.C. Chan
- Abstract要約: 多変量ガウス密度を用いた非標準密度の近似法を提案する。
提案手法は, 最終トレンド推定における既存近似法と同程度に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new quadratic-programming-based method of approximating a
nonstandard density using a multivariate Gaussian density. Such nonstandard
densities usually arise while developing posterior samplers for unobserved
components models involving inequality constraints on the parameters. For
instance, Chat et al. (2016) propose a new model of trend inflation with linear
inequality constraints on the stochastic trend. We implement the proposed new
method for this model and compare it to the existing approximation. We observe
that the proposed new method works as good as the existing approximation in
terms of the final trend estimates while achieving greater gains in terms of
sample efficiency.
- Abstract(参考訳): 本稿では,多変量ガウス密度を用いた非標準密度近似法を提案する。
このような非標準密度は、通常、パラメータの不等式制約を含む未観測成分モデルに対する後続サンプルを開発しながら生じる。
例えば、chat et al. (2016) は確率的傾向の線形不等式制約を持つトレンドインフレーションの新しいモデルを提案する。
本稿では,提案手法を実装し,既存の近似値と比較する。
提案手法は, 最終トレンド推定における既存近似法と同程度に有効であり, サンプル効率の面では高い利得が得られる。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Generalized generalized linear models: Convex estimation and online
bounds [11.295523372922533]
モデルのクラス(GL-based)モデル(GGLM)に不等式を導入する。
提案手法は, モデル間の非時間的変動を克服するために, 演算子に基づくアプローチを用いる。
本稿では,数値シミュレーションと実データを用いたインシデントの実例を示す。
論文 参考訳(メタデータ) (2023-04-26T19:19:42Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
ブートストラップに基づく逐次しきい値最小二乗推定器による雑音に対する精度と頑健性の観点から経験的成功を示す。
このブートストラップに基づくアンサンブル手法は,誤差率の指数収束率で,確率的に正しい可変選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-30T04:07:59Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
我々は、コパラメトリックの同時観測とともに、最適化モデル内の不確実なパラメータの観測を行う際に、データ駆動意思決定のための最適化について検討する。
本稿では,機械学習予測モデルをプログラムサンプル平均近似(SAA)に組み込んだ3つのデータ駆動フレームワークについて検討する。
論文 参考訳(メタデータ) (2022-07-27T14:45:04Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Gaussian Process Models with Low-Rank Correlation Matrices for Both
Continuous and Categorical Inputs [0.0]
混合連続および分類ガウス過程モデルにおけるクロス相関行列の低ランク近似を用いた手法を提案する。
低ランク相関(LRC)は、近似の適切なランクを選択することで、問題のパラメータの数に柔軟に適応する能力を提供する。
論文 参考訳(メタデータ) (2020-10-06T09:38:35Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。