論文の概要: Integrated Conditional Estimation-Optimization
- arxiv url: http://arxiv.org/abs/2110.12351v1
- Date: Sun, 24 Oct 2021 04:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 14:42:44.364627
- Title: Integrated Conditional Estimation-Optimization
- Title(参考訳): 統合条件推定最適化
- Authors: Paul Grigas, Meng Qi, Zuo-Jun (Max) Shen
- Abstract要約: 確率のある不確実なパラメータを文脈的特徴情報を用いて推定できる実世界の多くの最適化問題である。
不確実なパラメータの分布を推定する標準的な手法とは対照的に,統合された条件推定手法を提案する。
当社のI CEOアプローチは、穏健な条件下で理論的に一貫性があることを示します。
- 参考スコア(独自算出の注目度): 5.32836690371986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world optimization problems involve uncertain parameters with
probability distributions that can be estimated using contextual feature
information. In contrast to the standard approach of first estimating the
distribution of uncertain parameters and then optimizing the objective based on
the estimation, we propose an integrated conditional estimation-optimization
(ICEO) framework that estimates the underlying conditional distribution of the
random parameter while considering the structure of the optimization problem.
We directly model the relationship between the conditional distribution of the
random parameter and the contextual features, and then estimate the
probabilistic model with an objective that aligns with the downstream
optimization problem. We show that our ICEO approach is asymptotically
consistent under moderate regularity conditions and further provide finite
performance guarantees in the form of generalization bounds. Computationally,
performing estimation with the ICEO approach is a non-convex and often
non-differentiable optimization problem. We propose a general methodology for
approximating the potentially non-differentiable mapping from estimated
conditional distribution to the optimal decision by a differentiable function,
which greatly improves the performance of gradient-based algorithms applied to
the non-convex problem. We also provide a polynomial optimization solution
approach in the semi-algebraic case. Numerical experiments are also conducted
to show the empirical success of our approach in different situations including
with limited data samples and model mismatches.
- Abstract(参考訳): 多くの実世界の最適化問題は、文脈的特徴情報を用いて推定できる確率分布を持つ不確実なパラメータを含む。
まず,不確定パラメータの分布を推定し,その推定に基づいて目標を最適化する標準的なアプローチとは対照的に,最適化問題の構造を考慮しつつ,確率パラメータの基底条件分布を推定する統合条件推定最適化(iceo)フレームワークを提案する。
ランダムパラメータの条件分布と文脈的特徴の関係を直接モデル化し、下流最適化問題と整合した目標を用いて確率モデルを推定する。
我々のI CEOアプローチは、中等正規性条件下で漸近的に整合であることを示し、さらに一般化境界の形で有限な性能保証を提供する。
計算学的には、I CEO アプローチによる推定は非凸であり、しばしば微分不可能な最適化問題である。
本研究では, 推定条件分布から最適決定への可微分写像を微分可能関数によって近似する一般的な手法を提案し, 非凸問題に適用する勾配に基づくアルゴリズムの性能を大幅に改善する。
また,半代数の場合の多項式最適化解法を提案する。
また,データサンプルの制限やモデルミスマッチなど,異なる状況下での経験的成功を示すために,数値実験を行った。
関連論文リスト
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Probabilistic Approach to Black-Box Binary Optimization with Budget Constraints: Application to Sensor Placement [0.0]
ブラックボックスの目的関数と予算制約による二項最適化問題に対する完全確率的アプローチを提案する。
本研究では、非零成分の総数で条件付けられた確率変数をモデル化する条件付きベルヌーイ分布を開発する。
このアプローチは一般に、非確率的ブラックボックス目的関数と予算制約を持つバイナリ最適化問題に適用できる。
論文 参考訳(メタデータ) (2024-06-09T15:37:28Z) - BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
この研究はデータ駆動逆最適化(IO)に対処する。
目的は最適化モデルにおける未知のパラメータを、最適あるいは準最適と仮定できる観測された決定から推定することである。
論文 参考訳(メタデータ) (2024-05-28T06:52:17Z) - Distributed Fractional Bayesian Learning for Adaptive Optimization [7.16937736207894]
本稿では,各エージェントが共通パラメータを持つローカルコスト関数にのみアクセス可能な分散適応最適化問題について考察する。
分散最適化問題におけるパラメータの不確実性に対処し、同時に最適解を見つけるための貴重な洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2024-04-17T13:09:33Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
我々は、中等度偏差原理に基づくアプローチを用いて、高精度な信頼区間の体系的構築を開発する。
提案した信頼区間は,指数的精度,最小性,整合性,誤評価確率,結果整合性(UMA)特性の基準を満たすという意味で統計的に最適であることが示されている。
論文 参考訳(メタデータ) (2023-05-23T19:57:57Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。