論文の概要: Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
- arxiv url: http://arxiv.org/abs/2110.12752v1
- Date: Mon, 25 Oct 2021 09:25:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 01:58:01.862900
- Title: Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
- Title(参考訳): スペクトルグラフウェーブレットを用いたグラフ上の適応ガウス過程
- Authors: Felix L. Opolka, Yin-Cong Zhi, Pietro Li\`o, Xiaowen Dong
- Abstract要約: 本稿では,異なるスケールで情報を集約できるスペクトルグラフウェーブレットを用いたプロセスモデルを提案する。
グラフスペクトルの高密度領域における低近似誤差を求めるフィルタ関数のスペクトル適応近似を用いて,より大きなグラフに対するスケーラビリティを実現する。
- 参考スコア(独自算出の注目度): 3.2498534294827044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based models require aggregating information in the graph from
neighbourhoods of different sizes. In particular, when the data exhibit varying
levels of smoothness on the graph, a multi-scale approach is required to
capture the relevant information. In this work, we propose a Gaussian process
model using spectral graph wavelets, which can naturally aggregate
neighbourhood information at different scales. Through maximum likelihood
optimisation of the model hyperparameters, the wavelets automatically adapt to
the different frequencies in the data, and as a result our model goes beyond
capturing low frequency information. We achieve scalability to larger graphs by
using a spectrum-adaptive polynomial approximation of the filter function,
which is designed to yield a low approximation error in dense areas of the
graph spectrum. Synthetic and real-world experiments demonstrate the ability of
our model to infer scales accurately and produce competitive performances
against state-of-the-art models in graph-based learning tasks.
- Abstract(参考訳): グラフベースのモデルは、異なる大きさの近傍からグラフに情報を集約する必要がある。
特に、データがグラフ上で様々なレベルの滑らかさを示す場合、関連する情報をキャプチャするには、マルチスケールのアプローチが必要となる。
本研究では,スペクトルグラフウェーブレットを用いたガウス過程モデルを提案する。
モデルハイパーパラメータの最大極大最適化により、ウェーブレットはデータ内の異なる周波数に自動的に適応し、その結果、我々のモデルは低周波情報をキャプチャする以上のものとなる。
フィルタ関数のスペクトル適応多項式近似を用いて,グラフスペクトルの高密度領域における低近似誤差を求めることにより,より大きなグラフに対するスケーラビリティを実現する。
合成および実世界の実験は、グラフベースの学習タスクにおいて、我々のモデルが正確にスケールを推定し、最先端のモデルと競合する性能を得られることを示す。
関連論文リスト
- Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD)は、グラフデータの多様な性質を扱うために特別に設計された生成モデルである。
本稿では, 臨界グラフトポロジを安定化させることにより, 生成グラフの現実性を高める変調手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - Neural Scaling Laws on Graphs [54.435688297561015]
モデルおよびデータの観点から,グラフ上のニューラルスケーリング法則について検討する。
モデルスケーリングでは,スケール法が崩壊する現象を調査し,オーバーフィッティングを潜在的な理由として同定する。
データスケーリングについては、グラフのサイズが極めて不規則であるため、スケーリング法則においてグラフデータのボリュームを効果的に測定することはできないことを示唆する。
論文 参考訳(メタデータ) (2024-02-03T06:17:21Z) - Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
グラフ分類は、その構造とノード属性に基づいてグラフを分類することを目的としている。
本研究では,スペクトル特徴を導出するグラフ信号処理ツールを用いて,この課題に取り組むことを提案する。
このような単純なアプローチであっても、学習されたパラメータがなくても、強力なニューラルネットワークやグラフカーネルのベースラインと比較して、競争力のあるパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2023-06-06T15:31:05Z) - Large Graph Signal Denoising with Application to Differential Privacy [2.867517731896504]
本稿では,データ駆動型ウェーブレット・タイト・フレーム手法を用いて,グラフ上の信号のデノイングを行う場合について考察する。
我々はChebyshev-Jackson近似を用いて、大きなグラフにスケーラブルにする。
実データとシミュレーションデータから,様々な大きさのグラフに対して総合的な性能解析を行う。
論文 参考訳(メタデータ) (2022-09-05T16:32:54Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Stacked Graph Filter [19.343260981528186]
グラフ信号処理の観点から,グラフ畳み込みネットワーク(GCN)について検討する。
学習可能な解パラメータでグラフフィルタを積み重ねることで、高度に適応的で堅牢なグラフ分類モデルを構築することができる。
論文 参考訳(メタデータ) (2020-11-22T11:20:14Z) - FiGLearn: Filter and Graph Learning using Optimal Transport [49.428169585114496]
信号観測からグラフとその生成フィルタを学習するための新しいグラフ信号処理フレームワークを提案する。
ごくわずかな情報しか得られない場合、このフレームワークが欠落した値を推測するのにどのように使えるかを示す。
論文 参考訳(メタデータ) (2020-10-29T10:00:42Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Graph Convolution with Low-rank Learnable Local Filters [32.00396411583352]
本稿では,学習可能な低ランク局所フィルタを用いた新しいグラフ畳み込み手法を提案する。
従来のスペクトルグラフ畳み込み法よりも明らかに表現力が高い。
入力グラフデータに対する表現は理論的に証明され、グラフフィルタの局所性と局所グラフの正規化を利用する。
論文 参考訳(メタデータ) (2020-08-04T20:34:59Z) - Gaussian Processes on Graphs via Spectral Kernel Learning [9.260186030255081]
グラフのノード上で定義された信号の予測のためのグラフスペクトルに基づくガウス過程を提案する。
合成実験におけるモデルの解釈可能性を示し、様々な基底真理スペクトルフィルタを精度良く回収できることを示す。
論文 参考訳(メタデータ) (2020-06-12T17:51:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。