論文の概要: Efficient Parabolic Optimisation Algorithm for adaptive VQE
implementations
- arxiv url: http://arxiv.org/abs/2110.12756v1
- Date: Mon, 25 Oct 2021 09:36:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 08:02:58.867963
- Title: Efficient Parabolic Optimisation Algorithm for adaptive VQE
implementations
- Title(参考訳): 適応型VQE実装のための効率的なパラボリック最適化アルゴリズム
- Authors: V. Armaos, Dimitrios A. Badounas, Paraskevas Deligiannis, Konstantinos
Lianos, Yordan S. Yordanov
- Abstract要約: 変分量子固有解法(VQE)は、量子コンピューティングの最も有望な応用の1つである。
VQEのニーズに特化して設計されたパラボリック・オプティマイザを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational chemistry is one of the most promising applications of quantum
computing, mostly thanks to the development of the Variational Quantum
Eigensolver (VQE) algorithm. VQE is being studied extensively and numerous
optimisations of VQE's sub-processes have been suggested, including the
encoding methods and the choice of excitations. Recently, adaptive methods were
introduced that apply each excitation iteratively. When it comes to adaptive
VQE, research is focused on the choice of excitation pool and the strategies
for choosing each excitation. Here we focus on a usually overlooked component
of VQE, which is the choice of the classical optimisation algorithm. We
introduce the parabolic optimiser that we designed specifically for the needs
of VQE. This includes both an 1-D and an n-D optimiser that can be used either
for adaptive or traditional VQE implementations. We then continue to benchmark
the parabolic optimiser against Nelder-Mead for various implementations of VQE.
We found that the parabolic optimiser performs significantly better than
traditional optimisation methods, requiring fewer CNOTs and fewer quantum
experiments to achieve a given energy accuracy.
- Abstract(参考訳): 計算化学は量子コンピューティングの最も有望な応用の1つであり、主に変分量子固有解法(VQE)アルゴリズムの開発によるものである。
VQEは広く研究されており、符号化方法や励起の選択など、VQEのサブプロセスの多くの最適化が提案されている。
近年,各励起を反復的に適用する適応手法が導入された。
適応vqeに関して、研究は励起プールの選択と各励起を選択するための戦略に焦点を当てている。
ここでは、古典的最適化アルゴリズムの選択であるVQEの通常見過ごされるコンポーネントに焦点を当てる。
VQEのニーズに特化して設計されたパラボリックオプティマイザを導入する。
これには1-dとn-dのオプティマイザーの両方が含まれており、適応型または従来のvqe実装で使用できる。
VQEの様々な実装に対して、Nelder-Meadに対するパラボリックオプティマイザのベンチマークを継続する。
パラボリックオプティマイザは従来の最適化手法よりも大幅に優れており、与えられたエネルギー精度を達成するためにはCNOTを少なく、量子実験を少なくする必要があった。
関連論文リスト
- Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer [0.0]
Block ENcoding Quantum (BEQO) は、ブロック符号化を用いてコスト関数を表現するハイブリッド量子ソルバである。
以上の結果から,BENQOはQAOAよりも有意に優れた性能を示し,VQEと各種のパフォーマンス指標を比較検討した。
論文 参考訳(メタデータ) (2024-04-22T10:10:29Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances [0.0]
適応型VQAは、トレーニング中にパラメータの追加、削除、最適化によって回路構造を動的に修正する。
可変量子固有解器(EVQE)、可変アンサッツ(VAns)、ランダム適応-VQE(RA-VQE)の3つの適応的VQAを分析し、ベースラインとして導入するランダムなアプローチを提案する。
我々の分析は、短期量子デバイス用に設計されたAdaptative VQAのベンチマークを設定する。
論文 参考訳(メタデータ) (2023-08-03T14:39:02Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - Study of Adaptative Derivative-Assemble Pseudo-Trotter Ansatzes in VQE
through qiskit API [0.0]
変分量子アルゴリズム(VQA)は、量子位相推定アルゴリズムの問題を解決するために設計された。
ADAPT-VQEは最小数のパラメータを持つ準最適アンサッツを決定する。
パラメータ数、精度、H2およびLiH分子で使用されるCNOTゲートの数など、これらのアルゴリズムをすべて異なる基準で比較する。
論文 参考訳(メタデータ) (2022-10-25T16:53:14Z) - An Empirical Review of Optimization Techniques for Quantum Variational
Circuits [0.0]
量子変分回路(QVC)は、近距離量子ハードウェアと長期量子ハードウェアの両方の最も強力な用途の1つとしてしばしば主張される。
これらの回路を最適化するための標準的なアプローチは、最適化の各ステップで新しいパラメータを計算するために古典的なシステムに依存している。
我々は、様々な最適化タスクにおいて、多くの共通勾配と自由のポテンシャルを実証的に評価する。
論文 参考訳(メタデータ) (2022-02-03T03:20:54Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Classically optimal variational quantum algorithms [0.0]
変分量子アルゴリズム(VQA)のようなハイブリッド量子古典アルゴリズムは、NISQコンピュータ上での実装に適している。
このレターでは、VQAの暗黙的なステップを拡張します。古典的なプリ計算サブルーチンは、古典的なアルゴリズムを非自明に使用して、問題インスタンス固有の変動量子回路を単純化、変換、特定することができます。
論文 参考訳(メタデータ) (2021-03-31T13:33:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。