論文の概要: A Probabilistic Framework for Knowledge Graph Data Augmentation
- arxiv url: http://arxiv.org/abs/2110.13205v1
- Date: Mon, 25 Oct 2021 18:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 15:24:29.500576
- Title: A Probabilistic Framework for Knowledge Graph Data Augmentation
- Title(参考訳): 知識グラフデータ拡張のための確率的フレームワーク
- Authors: Jatin Chauhan, Priyanshu Gupta, Pasquale Minervini
- Abstract要約: NNMFAugは知識グラフ補完作業のためのデータ拡張を行う確率的フレームワークである。
我々の手法は、効率的でスケーラブルな利点を生かして、潜在的に多様な三重項を生成することができる。
- 参考スコア(独自算出の注目度): 10.041471500008726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present NNMFAug, a probabilistic framework to perform data augmentation
for the task of knowledge graph completion to counter the problem of data
scarcity, which can enhance the learning process of neural link predictors. Our
method can generate potentially diverse triples with the advantage of being
efficient and scalable as well as agnostic to the choice of the link prediction
model and dataset used. Experiments and analysis done on popular models and
benchmarks show that NNMFAug can bring notable improvements over the baselines.
- Abstract(参考訳): NNMFAugは、知識グラフ補完作業のためのデータ拡張を行う確率的フレームワークであり、データ不足の問題に対処し、ニューラルネットワーク予測器の学習プロセスを強化することができる。
リンク予測モデルとデータセットの選択によらず,効率性と拡張性という利点を生かして,潜在的に多様なトリプルを生成することができる。
人気のあるモデルとベンチマークで実施された実験と分析は、NNMFAugがベースラインに顕著な改善をもたらすことを示している。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
カーネルグラフニューラルネットワーク(KGNN)の設計と学習の改善
我々はLGA(Latent graph augmentation)と呼ばれる新しい構造保存グラフデータ拡張法を開発した。
提案モデルは,最先端のグラフ表現学習フレームワークに匹敵する,あるいは時として優れる性能を実現する。
論文 参考訳(メタデータ) (2023-10-17T14:04:22Z) - Amortised Inference in Bayesian Neural Networks [0.0]
Amortized Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)を紹介する。
補正された推論は、従来の変分推論によって得られたものと類似または良好な品質であることが示される。
次に、APOVI-BNNをニューラルプロセスファミリーの新たなメンバーと見なす方法について論じる。
論文 参考訳(メタデータ) (2023-09-06T14:02:33Z) - Tractable Probabilistic Graph Representation Learning with Graph-Induced
Sum-Product Networks [25.132159381873656]
グラフ表現学習のための新しい確率的フレームワークであるグラフ誘導Sum-Product Networks (GSPNs)を紹介する。
このモデルが持つ競争力は,不足するデータの下での監視シナリオの不足や,一般的なニューラルモデルと比較したグラフ分類に代表される。
論文 参考訳(メタデータ) (2023-05-17T20:02:08Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Relational VAE: A Continuous Latent Variable Model for Graph Structured
Data [0.0]
シミュレーションおよび実風力発電モニタリングデータに対する構造的確率密度モデルの適用例を示す。
ソースコードとシミュレートされたデータセットを合わせてリリースします。
論文 参考訳(メタデータ) (2021-06-30T13:24:27Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。