Quantum cryptographic resource distillation and entanglement
- URL: http://arxiv.org/abs/2110.13707v1
- Date: Tue, 26 Oct 2021 13:53:28 GMT
- Title: Quantum cryptographic resource distillation and entanglement
- Authors: Minjin Choi, Soojoon Lee
- Abstract summary: We look into multipartite quantum states on which quantum cryptographic protocols including quantum key distribution and quantum secret sharing can be perfectly performed.
We define the cryptographic cryptographic resource distillable rate as the rate at which such multipartite state can be distilled from a given multipartite state.
- Score: 3.649582705724549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We look into multipartite quantum states on which quantum cryptographic
protocols including quantum key distribution and quantum secret sharing can be
perfectly performed, and define the quantum cryptographic resource distillable
rate as the asymptotic rate at which such multipartite state can be distilled
from a given multipartite state. Investigating several relations between
entanglement and the rate, we show that there exists a multipartite bound
entangled state whose quantum cryptographic resource distillable rate is
strictly positive, that is, there exists a multipartite entangled state which
is not distillable, but can be useful for quantum cryptography such as quantum
key distribution and quantum secret sharing.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Quantum information masking of an arbitrary qudit can be realized in
multipartite lower dimensional systems [0.0]
Quantum information masking is a protocol that hides the original quantum information from subsystems and spreads it over quantum correlation.
Our scheme well demonstrates the abundance of quantum correlation between multipartite quantum system and has potential application in the security of quantum information processing.
arXiv Detail & Related papers (2022-10-08T09:21:08Z) - Genuinely Multipartite Entanglement vias Shallow Quantum Circuits [0.0]
We prove any genuinely multipartite entanglement on finite-dimensional spaces can be generated by using 2-layer shallow quantum circuit.
We propose a semi-device-independent entanglement model depending on the local connection ability.
Results show new insights for the multipartite entanglement, quantum network, and measurement-based quantum computation.
arXiv Detail & Related papers (2022-04-20T07:41:30Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.