Room Temperature Quantum Coherent Revival in an Ensemble of Artificial
Atoms
- URL: http://arxiv.org/abs/2010.15198v1
- Date: Wed, 28 Oct 2020 19:40:13 GMT
- Title: Room Temperature Quantum Coherent Revival in an Ensemble of Artificial
Atoms
- Authors: Igor Khanonkin, Ori Eyal, Johann Peter Reithmaier, and Gadi Eisenstein
- Abstract summary: Control over quantum states, inherent to QCR, together with the dynamical QD properties present an opportunity for practical room temperature building blocks of quantum information processing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report a demonstration of the hallmark concept of quantum optics: periodic
collapse and revival of quantum coherence (QCR) in a room temperature ensemble
of quantum dots (QD). Control over quantum states, inherent to QCR, together
with the dynamical QD properties present an opportunity for practical room
temperature building blocks of quantum information processing. The amplitude
decay of QCR is dictated by the QD homogeneous linewidth, thus, enabling its
extraction in a double-pulse Ramsey-type experiment. The more common photon
echo technique was also invoked and yielded the same linewidth. Measured
electrical bias and temperature dependencies of the transverse relaxation times
enable to determine the two main decoherence mechanisms: carrier-carrier and
carrier-phonon scatterings.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Retardation of entanglement decay of two spin qubits by quantum
measurements [0.0]
Two-electron spin subsystem (TESSS) is a prototype system of two electron spin quantum dot (QD) qubits.
We propose a way to counteract the decay of entanglement in TESSS by performing some manipulations on TESSS.
arXiv Detail & Related papers (2021-10-26T16:20:20Z) - Influence of Stark-shift on quantum coherence and non-classical
correlations for two two-level atoms interacting with a single-mode cavity
field [0.0]
We show that the intensity-dependent Stark-shift in the cavity and the number of coherent state photons plays a key role in enhancing or destroying both quantum coherence (QC) and quantum discord (QD)
We believe that the present work shows that the quantum information protocols based on physical resources in optical systems could be controlled by adjusting the Stark-shift parameters.
arXiv Detail & Related papers (2020-03-25T11:37:15Z) - Experimental Observation of Equilibrium and Dynamical Quantum Phase
Transitions via Out-of-Time-Ordered Correlators [14.389514788367086]
We report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator.
We demonstrate that the long-time average value of the OTOC in quantum quench signals the equilibrium quantum critical point and ordered quantum phases.
arXiv Detail & Related papers (2019-12-27T09:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.