Optimal Compression of Locally Differentially Private Mechanisms
- URL: http://arxiv.org/abs/2111.00092v1
- Date: Fri, 29 Oct 2021 21:36:34 GMT
- Title: Optimal Compression of Locally Differentially Private Mechanisms
- Authors: Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, Lucas Theis
- Abstract summary: We demonstrate the benefits of schemes that jointly compress and privatize the data using shared randomness.
Our theoretical and empirical findings show that our approach can compress PrivUnit (Bhowmick et al., Coding and Subset Selection (Ye et al., the best known LDP algorithms for mean and frequency estimation, to the order of epsilon-bits of communication, while preserving their privacy and accuracy guarantees, to the order of epsilon-bits of communication, to the order of epsilon-bits of communication, to the order of epsilon-bits of communication, to the
- Score: 21.200464908282594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressing the output of \epsilon-locally differentially private (LDP)
randomizers naively leads to suboptimal utility. In this work, we demonstrate
the benefits of using schemes that jointly compress and privatize the data
using shared randomness. In particular, we investigate a family of schemes
based on Minimal Random Coding (Havasi et al., 2019) and prove that they offer
optimal privacy-accuracy-communication tradeoffs. Our theoretical and empirical
findings show that our approach can compress PrivUnit (Bhowmick et al., 2018)
and Subset Selection (Ye et al., 2018), the best known LDP algorithms for mean
and frequency estimation, to to the order of \epsilon-bits of communication
while preserving their privacy and accuracy guarantees.
Related papers
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
We show that PrivUnit achieves the optimal variance among a large family of locally private randomizers.
We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees.
arXiv Detail & Related papers (2022-05-05T06:43:46Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
arXiv Detail & Related papers (2021-10-27T04:11:06Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
We consider the ubiquitous problem of gaussian process (GP) bandit optimization from the lens of privacy-preserving statistics.
We propose a solution for differentially private GP bandit optimization that combines a uniform kernel approximator with random perturbations.
Our algorithms maintain differential privacy throughout the optimization procedure and critically do not rely explicitly on the sample path for prediction.
arXiv Detail & Related papers (2021-02-24T18:52:24Z) - Output Perturbation for Differentially Private Convex Optimization with
Improved Population Loss Bounds, Runtimes and Applications to Private
Adversarial Training [12.386462516398469]
Finding efficient, easily implementable differentially private (DP) algorithms that offer strong excess risk bounds is an important problem in modern machine learning.
We provide the tightest known $(epsilon, 0)$-DP population loss bounds and fastest runtimes under the presence of smoothness and strong convexity.
We apply our theory to two learning frameworks: tilted ERM and adversarial learning frameworks.
arXiv Detail & Related papers (2021-02-09T08:47:06Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
We provide strong privacy loss bounds when an analyst may select pure DP, bounded range (e.g. exponential mechanisms) or concentrated DP mechanisms in any order.
We also provide optimal privacy loss bounds that apply when an analyst can select pure DP and bounded range mechanisms in a batch.
arXiv Detail & Related papers (2020-04-15T17:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.