論文の概要: A comparison of mixed-variables Bayesian optimization approaches
- arxiv url: http://arxiv.org/abs/2111.01533v1
- Date: Sat, 30 Oct 2021 09:26:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 06:56:38.525485
- Title: A comparison of mixed-variables Bayesian optimization approaches
- Title(参考訳): 混合変数ベイズ最適化手法の比較
- Authors: Jhouben Cuesta-Ramirez and Rodolphe Le Riche and Olivier Roustant and
Guillaume Perrin and Cedric Durantin and Alain Gliere
- Abstract要約: 実際の最適化問題は、変数が離散的かつ連続的な混合探索空間上で定義される。
本稿では、離散変数が連続潜伏変数に緩和されるガウス過程を通じて、コストのかかる混合問題にアプローチする。
特に、連続潜伏変数による問題の再構成は、混合空間で直接働く探索と競合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most real optimization problems are defined over a mixed search space where
the variables are both discrete and continuous. In engineering applications,
the objective function is typically calculated with a numerically costly
black-box simulation.General mixed and costly optimization problems are
therefore of a great practical interest, yet their resolution remains in a
large part an open scientific question. In this article, costly mixed problems
are approached through Gaussian processes where the discrete variables are
relaxed into continuous latent variables. The continuous space is more easily
harvested by classical Bayesian optimization techniques than a mixed space
would. Discrete variables are recovered either subsequently to the continuous
optimization, or simultaneously with an additional continuous-discrete
compatibility constraint that is handled with augmented Lagrangians. Several
possible implementations of such Bayesian mixed optimizers are compared. In
particular, the reformulation of the problem with continuous latent variables
is put in competition with searches working directly in the mixed space. Among
the algorithms involving latent variables and an augmented Lagrangian, a
particular attention is devoted to the Lagrange multipliers for which a local
and a global estimation techniques are studied. The comparisons are based on
the repeated optimization of three analytical functions and a beam design
problem.
- Abstract(参考訳): ほとんどの実最適化問題は、変数が離散かつ連続である混合探索空間上で定義される。
工学的応用において、目的関数は通常、計算コストのかかるブラックボックスシミュレーションで計算されるが、一般の混合およびコストのかかる最適化問題は非常に実用的であり、その解決はオープン科学的な問題である。
本稿では、離散変数が連続潜伏変数に緩和されるガウス過程を通じて、コストのかかる混合問題にアプローチする。
連続空間は混合空間よりも古典的ベイズ最適化手法により容易に得ることができる。
離散変数は、その後の連続的な最適化、または拡張ラグランジアンで処理される追加の連続離散互換制約によって復元される。
このようなベイズ混合最適化のいくつかの実装を比較する。
特に、連続的潜在変数による問題の再構成は、混合空間で直接働く検索と競合する。
潜在変数と拡張ラグランジアンを含むアルゴリズムのうち、局所的および大域的推定手法を研究するラグランジ乗数に特に注意が向けられている。
比較は3つの解析関数の繰り返し最適化とビーム設計問題に基づいている。
関連論文リスト
- Convergence of Expectation-Maximization Algorithm with Mixed-Integer Optimization [5.319361976450982]
本稿では,特定の種類のEMアルゴリズムの収束を保証する一連の条件を紹介する。
本研究では,混合整数非線形最適化問題の解法として,反復アルゴリズムの新しい解析手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T11:42:46Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
最適化プログラミング(SP)、最適制御(SOC)、決定プロセス(MDP)に焦点を当てる。
凸多段マルコフ問題の解決の最近の進歩は、動的プログラミング方程式のコスト対ゴー関数の切断面近似に基づいている。
切削平面型法は多段階問題を多段階的に扱えるが、状態(決定)変数は比較的少ない。
論文 参考訳(メタデータ) (2023-03-28T01:30:40Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
本稿では,線形制約付き混合変数問題の解法として,新しいサロゲートに基づく大域的最適化アルゴリズムを提案する。
目的関数はブラックボックスとコスト対評価であり、線形制約は予測不可能な事前知識である。
本稿では,2種類の探索関数を導入し,混合整数線形計画解法を用いて実現可能な領域を効率的に探索する。
論文 参考訳(メタデータ) (2023-02-09T15:04:35Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Nonequilibrium Monte Carlo for unfreezing variables in hard
combinatorial optimization [1.1783108699768]
適応的勾配自由戦略を開発することにより,非局所非平衡モンテカルロ(NMC)アルゴリズムの量子インスパイアされたファミリーを導入する。
我々は、特殊解法と汎用解法の両方に対して、大幅な高速化と堅牢性を観察する。
論文 参考訳(メタデータ) (2021-11-26T17:45:32Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
内部最適化問題が凸であるが非滑らかである場合の一階法を研究する。
本研究では, ヤコビアンの近位勾配降下と近位座標降下収率列の前方モード微分が, 正確なヤコビアンに向かって収束していることを示す。
論文 参考訳(メタデータ) (2021-05-04T17:31:28Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Combinatorial Bayesian Optimization with Random Mapping Functions to
Convex Polytopes [43.19936635161588]
大規模空間でうまく動作するような空間におけるベイズ最適化法を提案する。
提案アルゴリズムは,既存手法と比較して良好な性能を示す。
論文 参考訳(メタデータ) (2020-11-26T02:22:41Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Bayesian optimization of variable-size design space problems [0.0]
このタイプの最適化問題を解決するために,ベイズ最適化に基づく2つのアプローチが提案されている。
最初のアプローチは、最も有望な設計サブスペースに計算予算を集中させるための予算配分戦略である。
第二のアプローチは、部分的に異なる変数の集合によって特徴づけられるサンプル間の共分散を計算することができるカーネル関数の定義に基づいている。
論文 参考訳(メタデータ) (2020-03-06T16:30:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。