論文の概要: A Causality-based Graphical Test to obtain an Optimal Blocking Set for
Randomized Experiments
- arxiv url: http://arxiv.org/abs/2111.02306v1
- Date: Wed, 3 Nov 2021 15:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 12:48:26.435614
- Title: A Causality-based Graphical Test to obtain an Optimal Blocking Set for
Randomized Experiments
- Title(参考訳): ランダム化実験のための最適ブロックセットを得る因果性に基づくグラフィカルテスト
- Authors: Abhishek K. Umrawal
- Abstract要約: ブロッキングは、実験材料が均質でない場合に因果効果を正確に推定する手法である。
一般の半マルコフ因果モデルに対するそのような集合を得るためのグラフィカルテストを提供する。
また、ブロッキングの統計的コストと経済的コストの両方を考慮した最適なブロッキングセットを得るための、より一般的な問題を解決するためのアイデアを提案し、提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized experiments are often performed to study the causal effects of
interest. Blocking is a technique to precisely estimate the causal effects when
the experimental material is not homogeneous. We formalize the problem of
obtaining a statistically optimal set of covariates to be used to create blocks
while performing a randomized experiment. We provide a graphical test to obtain
such a set for a general semi-Markovian causal model. We also propose and
provide ideas towards solving a more general problem of obtaining an optimal
blocking set that considers both the statistical and economic costs of
blocking.
- Abstract(参考訳): ランダム化実験は、しばしば興味の因果効果を研究するために行われる。
ブロッキングは実験材料が均質でない場合に因果効果を正確に推定する手法である。
ランダム化実験を行いながらブロック生成に使用する共変量集合を統計的に最適に獲得する問題を定式化する。
一般の半マルコフ因果モデルに対するそのような集合を得るためのグラフィカルテストを提供する。
また,ブロッキングの統計的コストと経済的コストの両方を考慮する最適ブロッキング集合を得るという,より一般的な問題を解決するためのアイデアを提案し,提案する。
関連論文リスト
- Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
論文 参考訳(メタデータ) (2024-03-21T20:29:43Z) - Batch Bayesian Optimization for Replicable Experimental Design [56.64902148159355]
多くの実世界の設計問題は、大規模で異質な観測ノイズのため、複数の実験条件を並列に評価し、各条件を複数回再現する。
本稿では,3つのアルゴリズムを含むReplicable Experimental Designフレームワークのバッチトンプソンサンプリングを提案する。
我々は,アルゴリズムの有効性を,精密農業とAutoMLの2つの実世界の応用例で示す。
論文 参考訳(メタデータ) (2023-11-02T12:46:03Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Choosing a Proxy Metric from Past Experiments [54.338884612982405]
多くのランダム化実験では、長期的な計量の処理効果は測定が困難または不可能であることが多い。
一般的な方法は、いくつかの短期的プロキシメトリクスを計測して、長期的メトリックを綿密に追跡することである。
ランダム化実験の同種集団において最適なプロキシメトリックを定義し構築するための新しい統計フレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-14T17:43:02Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty
Modeling [21.098866735156207]
そこで本研究では,アレータティック不確実性のモデル化における最先端技術である正規化フロー(NF)のアンサンブルを提案する。
アンサンブルは固定されたドロップアウトマスクのセットで作られ、別個のNFモデルを作るよりも安価である。
本研究では,NFsの特異な構造,基底分布を利用して,試料に依存することなくアレータティック不確かさを推定する方法を実証する。
論文 参考訳(メタデータ) (2023-02-02T18:38:35Z) - Shortcomings of Top-Down Randomization-Based Sanity Checks for
Evaluations of Deep Neural Network Explanations [67.40641255908443]
モデルランダム化に基づく正当性チェックの限界を,説明書の評価のために同定する。
トップダウンモデルランダム化は、フォワードパスアクティベーションのスケールを高い確率で保存する。
論文 参考訳(メタデータ) (2022-11-22T18:52:38Z) - Hypothesis Testing for Equality of Latent Positions in Random Graphs [0.2741266294612775]
2つの頂点 $i$ と $j$th が、おそらくスケーリングまで、同じ潜在位置を持つという仮説テストの問題を考える。
グラフの隣接性または正規化ラプラシアンスペクトル埋め込みのいずれかのi$th行とj$th行の間の経験的マハラノビス距離に基づくいくつかのテスト統計について提案する。
これらのテスト統計を用いて、標準ブロックモデルとその次数補正変種を選択する際のモデル選択問題に対処する。
論文 参考訳(メタデータ) (2021-05-23T01:27:23Z) - Refined bounds for randomized experimental design [7.899055512130904]
実験的な設計は与えられた基準のための最もよい推定器を得るために与えられたセット間のサンプルを選ぶためのアプローチです。
EおよびG最適化設計におけるランダム化戦略の理論的保証を提案する。
論文 参考訳(メタデータ) (2020-12-22T20:37:57Z) - Selective Inference for Latent Block Models [50.83356836818667]
本研究では,潜在ブロックモデルに対する選択的推論法を提案する。
我々は,潜在ブロックモデルの行と列クラスタのメンバシップの集合に対する統計的テストを構築した。
提案された正確で近似されたテストは、選択バイアスを考慮していない単純なテストと比較して効果的に機能する。
論文 参考訳(メタデータ) (2020-05-27T10:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。