論文の概要: Hypothesis Testing for Equality of Latent Positions in Random Graphs
- arxiv url: http://arxiv.org/abs/2105.10838v1
- Date: Sun, 23 May 2021 01:27:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:02:40.643422
- Title: Hypothesis Testing for Equality of Latent Positions in Random Graphs
- Title(参考訳): ランダムグラフにおける潜在位置の等式に関する仮説検証
- Authors: Xinjie Du, Minh Tang
- Abstract要約: 2つの頂点 $i$ と $j$th が、おそらくスケーリングまで、同じ潜在位置を持つという仮説テストの問題を考える。
グラフの隣接性または正規化ラプラシアンスペクトル埋め込みのいずれかのi$th行とj$th行の間の経験的マハラノビス距離に基づくいくつかのテスト統計について提案する。
これらのテスト統計を用いて、標準ブロックモデルとその次数補正変種を選択する際のモデル選択問題に対処する。
- 参考スコア(独自算出の注目度): 0.2741266294612775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the hypothesis testing problem that two vertices $i$ and $j$ of a
generalized random dot product graph have the same latent positions, possibly
up to scaling. Special cases of this hypotheses test include testing whether
two vertices in a stochastic block model or degree-corrected stochastic block
model graph have the same block membership vectors. We propose several test
statistics based on the empirical Mahalanobis distances between the $i$th and
$j$th rows of either the adjacency or the normalized Laplacian spectral
embedding of the graph. We show that, under mild conditions, these test
statistics have limiting chi-square distributions under both the null and local
alternative hypothesis, and we derived explicit expressions for the
non-centrality parameters under the local alternative. Using these limit
results, we address the model selection problem of choosing between the
standard stochastic block model and its degree-corrected variant. The
effectiveness of our proposed tests are illustrated via both simulation studies
and real data applications.
- Abstract(参考訳): 一般化されたランダムドット積グラフの2つの頂点$i$と$j$が、おそらくスケーリングまで、同じ潜在位置を持つという仮説テスト問題を考える。
この仮説テストの特別な例は、確率ブロックモデルと次数補正確率ブロックモデルグラフの2つの頂点が同じブロックメンバシップベクトルを持つかどうかをテストすることである。
グラフの隣接性または正規化ラプラシアンスペクトル埋め込みのいずれかのi$th行とj$th行の間の経験的マハラノビス距離に基づくいくつかのテスト統計について提案する。
軽度条件下では、これらのテスト統計は、ヌルおよび局所的な代替仮説の下でのカイ二乗分布を制限することを示し、局所的な代替条件の下で非中央性パラメータの明示的な表現を導出した。
これらの極限結果を用いて, 標準確率ブロックモデルとその次数補正型を選択できるモデル選択問題に対処する。
提案実験の有効性はシミュレーション研究と実データ応用の両方を通して示される。
関連論文リスト
- Testing Dependency of Weighted Random Graphs [4.0554893636822]
本研究では,2つのランダムグラフ間のエッジ依存性を検出するタスクについて検討する。
一般のエッジウェイト分布に対して、最適テストが情報理論上可能か不可能となるしきい値を確立する。
論文 参考訳(メタデータ) (2024-09-23T10:07:41Z) - Doubly Robust Conditional Independence Testing with Generative Neural Networks [8.323172773256449]
本稿では、第3の確率ベクトル$Z$を与えられた2つのジェネリックランダムベクトル$X$と$Y$の条件独立性をテストする問題に対処する。
条件分布を明示的に推定しない新しい非パラメトリック試験法を提案する。
論文 参考訳(メタデータ) (2024-07-25T01:28:59Z) - Collaborative non-parametric two-sample testing [55.98760097296213]
目標は、null仮説の$p_v = q_v$が拒否されるノードを特定することである。
グラフ構造を効率的に活用する非パラメトリックコラボレーティブ2サンプルテスト(CTST)フレームワークを提案する。
提案手法は,f-divergence Estimation, Kernel Methods, Multitask Learningなどの要素を統合する。
論文 参考訳(メタデータ) (2024-02-08T14:43:56Z) - Statistical Properties of the Entropy from Ordinal Patterns [55.551675080361335]
大規模な時系列モデルに対するエントロピー・統計複雑性の連立分布を知っていれば、今日まで利用できない統計テストが可能になるだろう。
実正規化エントロピーが零でも1でもないモデルに対して、経験的シャノンのエントロピーの分布を特徴づける。
2つの信号が同じシャノンのエントロピーを持つ順序パターンを生成するという仮説を否定するのに十分な証拠があるかどうかを検証する。
論文 参考訳(メタデータ) (2022-09-15T23:55:58Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Least Squares Estimation Using Sketched Data with Heteroskedastic Errors [0.0]
ランダムなプロジェクションによってスケッチされたデータを用いた推定は、エラーがホモスケダスティックであるかのように振る舞うことを示す。
楽器関連性の第一段階Fテストを含む推論は、スケッチスキームが適切に選択された場合の完全なサンプルケースよりも簡単である。
論文 参考訳(メタデータ) (2020-07-15T15:58:27Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
ほとんどの因果モデルでは、単一の同質な集団を仮定するが、これは多くの応用において成り立たない仮定である。
等質性仮定に違反した場合、そのような仮定に基づいて開発された因果モデルが正しい因果方向を識別できないことを示す。
我々は,$k$-means型クラスタリングアルゴリズムを用いて,一般的な因果方向検定統計量の調整を提案する。
論文 参考訳(メタデータ) (2020-06-08T18:59:14Z) - Selective Inference for Latent Block Models [50.83356836818667]
本研究では,潜在ブロックモデルに対する選択的推論法を提案する。
我々は,潜在ブロックモデルの行と列クラスタのメンバシップの集合に対する統計的テストを構築した。
提案された正確で近似されたテストは、選択バイアスを考慮していない単純なテストと比較して効果的に機能する。
論文 参考訳(メタデータ) (2020-05-27T10:44:19Z) - Testing Goodness of Fit of Conditional Density Models with Kernels [16.003516725803774]
条件分布に適合する2つの非パラメトリック統計テストを提案する。
私たちのテストは、任意の固定された代替条件モデルに対して一貫性があることを示します。
ニューヨーク市のタクシー降車場所の分布をモデル化する作業において,テストの解釈可能性を示す。
論文 参考訳(メタデータ) (2020-02-24T14:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。