論文の概要: Representation Learning via Quantum Neural Tangent Kernels
- arxiv url: http://arxiv.org/abs/2111.04225v2
- Date: Tue, 9 Nov 2021 16:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 12:18:34.351375
- Title: Representation Learning via Quantum Neural Tangent Kernels
- Title(参考訳): 量子ニューラルタンジェントカーネルによる表現学習
- Authors: Junyu Liu, Francesco Tacchino, Jennifer R. Glick, Liang Jiang, Antonio
Mezzacapo
- Abstract要約: 変分量子回路は、量子機械学習や変分量子シミュレーションタスクで使用される。
本稿では、ニューラルネットワークカーネルの理論を用いて変動量子回路を解析し、これらの問題を論じる。
変形角がゆっくり変化し、線形摂動が十分であるような、凍結限界(遅延訓練)の力学を解析的に解いた。
- 参考スコア(独自算出の注目度): 10.168123455922249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum circuits are used in quantum machine learning and
variational quantum simulation tasks. Designing good variational circuits or
predicting how well they perform for given learning or optimization tasks is
still unclear. Here we discuss these problems, analyzing variational quantum
circuits using the theory of neural tangent kernels. We define quantum neural
tangent kernels, and derive dynamical equations for their associated loss
function in optimization and learning tasks. We analytically solve the dynamics
in the frozen limit, or lazy training regime, where variational angles change
slowly and a linear perturbation is good enough. We extend the analysis to a
dynamical setting, including quadratic corrections in the variational angles.
We then consider hybrid quantum-classical architecture and define a large-width
limit for hybrid kernels, showing that a hybrid quantum-classical neural
network can be approximately Gaussian. The results presented here show limits
for which analytical understandings of the training dynamics for variational
quantum circuits, used for quantum machine learning and optimization problems,
are possible. These analytical results are supported by numerical simulations
of quantum machine learning experiments.
- Abstract(参考訳): 変分量子回路は、量子機械学習および変分量子シミュレーションタスクで使用される。
優れた変動回路の設計や、与えられた学習や最適化タスクでどれだけうまく機能するかの予測は、いまだに不明である。
本稿では,ニューラル・タンジェント・カーネルの理論を用いて変動量子回路の解析を行う。
量子ニューラルネットワークカーネルを定義し、最適化および学習タスクにおける損失関数の動的方程式を導出する。
我々は,変動角がゆるやかに変化し,線形摂動が十分であるような,凍結限界(lazy training regime)におけるダイナミクスを解析的に解く。
解析を動的設定に拡張し、変分角の二次補正を含む。
次に、ハイブリッド量子古典的アーキテクチャを検討し、ハイブリッド核に対する大きな幅制限を定義し、ハイブリッド量子古典的ニューラルネットワークがおよそガウス的であることを示す。
ここで得られた結果は、量子機械学習や最適化問題に用いられる変分量子回路の学習ダイナミクスを解析的に理解できる限界を示している。
これらの解析結果は量子機械学習実験の数値シミュレーションによって支持される。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Deep learning-based quantum algorithms for solving nonlinear partial
differential equations [3.312385039704987]
偏微分方程式は自然科学や関連する分野によく現れる。
本研究では,高次元非線形偏微分方程式を解くための古典的深層学習法の拡張の可能性を探る。
論文 参考訳(メタデータ) (2023-05-03T10:17:51Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
ディジタル量子シミュレーションとハイブリッド回路学習は、量子最適制御の新しい可能性を開く。
有限個の量子ビットを持つ量子デバイス上で、捕捉された量子粒子の波束展開をシミュレートする。
本手法の誤差に対する堅牢性について考察し,回路にバレンプラトーが存在しないことを示す。
論文 参考訳(メタデータ) (2022-11-01T11:53:49Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Analytic theory for the dynamics of wide quantum neural networks [7.636414695095235]
本研究では,変分量子機械学習モデルの学習誤差に対する勾配降下のダイナミクスについて検討する。
ランダムな量子回路では、残差トレーニング誤差の指数的減衰をシステムのパラメータの関数として予測し、特徴付ける。
論文 参考訳(メタデータ) (2022-03-30T23:24:06Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Variational Quantum Classifiers Through the Lens of the Hessian [0.0]
量子コンピューティングでは、変分量子アルゴリズム(VQA)は最適な組み合わせを見つけるのに適している。
勾配勾配勾配最適化アルゴリズムによるVQAの訓練は、よい収束性を示した。
古典的なディープラーニングと同様に、変分量子回路は勾配問題に悩まされる。
論文 参考訳(メタデータ) (2021-05-21T06:57:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。