論文の概要: Analytic theory for the dynamics of wide quantum neural networks
- arxiv url: http://arxiv.org/abs/2203.16711v3
- Date: Wed, 12 Apr 2023 01:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 19:11:47.286820
- Title: Analytic theory for the dynamics of wide quantum neural networks
- Title(参考訳): 広量子ニューラルネットワークのダイナミクスに関する解析理論
- Authors: Junyu Liu, Khadijeh Najafi, Kunal Sharma, Francesco Tacchino, Liang
Jiang, Antonio Mezzacapo
- Abstract要約: 本研究では,変分量子機械学習モデルの学習誤差に対する勾配降下のダイナミクスについて検討する。
ランダムな量子回路では、残差トレーニング誤差の指数的減衰をシステムのパラメータの関数として予測し、特徴付ける。
- 参考スコア(独自算出の注目度): 7.636414695095235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized quantum circuits can be used as quantum neural networks and
have the potential to outperform their classical counterparts when trained for
addressing learning problems. To date, much of the results on their performance
on practical problems are heuristic in nature. In particular, the convergence
rate for the training of quantum neural networks is not fully understood. Here,
we analyze the dynamics of gradient descent for the training error of a class
of variational quantum machine learning models. We define wide quantum neural
networks as parameterized quantum circuits in the limit of a large number of
qubits and variational parameters. We then find a simple analytic formula that
captures the average behavior of their loss function and discuss the
consequences of our findings. For example, for random quantum circuits, we
predict and characterize an exponential decay of the residual training error as
a function of the parameters of the system. We finally validate our analytic
results with numerical experiments.
- Abstract(参考訳): パラメタライズド量子回路は量子ニューラルネットワークとして使用することができ、学習問題に対処するために訓練された場合、古典的な量子回路よりも優れる可能性がある。
これまでのところ、実践的な問題におけるパフォーマンスに関する結果は、本質的にヒューリスティックである。
特に、量子ニューラルネットワークのトレーニングの収束率は、完全には理解されていない。
本稿では,変分量子機械学習モデルの訓練誤差に対する勾配降下のダイナミクスを解析する。
広い量子ニューラルネットワークを、多数の量子ビットと変動パラメータの極限におけるパラメータ化量子回路として定義する。
次に、損失関数の平均的な挙動を捉える単純な解析式を見つけ、その結果について考察する。
例えば、ランダムな量子回路では、残差トレーニング誤差の指数的減衰をシステムのパラメータの関数として予測し、特徴付ける。
解析結果を数値実験により検証した。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
量子タンジェントカーネルモデルのトレーニング可能性と表現性の関係について検討する。
大域的損失関数に対して、大域的および局所的な量子符号化の両方の高表現性は、量子接核値の指数集中を0に導くことを厳密に証明する。
我々の発見は量子ニューラル・タンジェント・カーネルの重要な特徴を明らかにし、広い量子変動回路モデルの設計に有用な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-08T19:00:01Z) - Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Representation Learning via Quantum Neural Tangent Kernels [10.168123455922249]
変分量子回路は、量子機械学習や変分量子シミュレーションタスクで使用される。
本稿では、ニューラルネットワークカーネルの理論を用いて変動量子回路を解析し、これらの問題を論じる。
変形角がゆっくり変化し、線形摂動が十分であるような、凍結限界(遅延訓練)の力学を解析的に解いた。
論文 参考訳(メタデータ) (2021-11-08T01:30:34Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークと同じような約束のため、重要な量子アプリケーションである。
我々は,QNNの損失関数のランドスケープを定量的に調査し,トレーニング用に単純だが極めて難しいQNNインスタンスのクラスを同定する。
我々は、我々の構成が、典型的な勾配ベースの回路で実際に難しい事例となることを実証的に確認する。
論文 参考訳(メタデータ) (2021-10-06T03:23:44Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。