Effective optoelectrical entanglement and strong mechanical squeezing in
a multi-modulated optoelectromechanical system
- URL: http://arxiv.org/abs/2111.04381v1
- Date: Mon, 8 Nov 2021 10:58:16 GMT
- Title: Effective optoelectrical entanglement and strong mechanical squeezing in
a multi-modulated optoelectromechanical system
- Authors: Sampreet Kalita, Saumya Shah and Amarendra K. Sarma
- Abstract summary: We propose effective generation of entangled and squeezed states in an optoelectromechanical system.
We obtain enhanced entanglement between optical and LC circuit modes that are coupled via a common mechanical mode in the microwave regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose effective generation of entangled and squeezed states in an
optoelectromechanical system comprising of a macroscopic LC electrical circuit
and an optomechanical system. We obtain enhanced entanglement between optical
and LC circuit modes that are coupled via a common mechanical mode in the
microwave regime. We achieve this enhancement by a stepwise application of
modulation in the laser drive, the voltage drive and the spring constant of the
moveable end-mirror. The maximum amount of entanglement is observed to be
primarily dependent on the voltage modulation and changes slightly with the
parameters of the spring constant. Alongside the generated entanglement, we
also study the variation of the maximum degree of squeezing in the mechanical
mode for different parameter regimes.
Related papers
- Enhancing entanglement in nano-mechanical oscillators via hybrid optomechanical systems [0.0]
We compare four criteria for continuous-variable entanglement, which serve as sufficient conditions for determining the separability of Gaussian two-mode states.
Our findings indicate that while the applied inseparability criteria show similar entanglement patterns within specific parameter ranges, the degree of entanglement varies depending on the chosen criteria.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Broadband Multidimensional Variational Measurement with Non-Symmetric Coupling [41.94295877935867]
We analyze a general case of the non-symmetric measurement scheme, in which the coupling strengths with the light modes are not equal to each other.
We found that the back action can be completely excluded from the measurement result in the case of the asymmetric system.
arXiv Detail & Related papers (2024-07-30T11:12:13Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Integrated frequency-modulated optical parametric oscillator [45.82374977939355]
We introduce an integrated optical frequency comb generator that combines electro-optics and parametric amplification.
The FM-OPO microcomb does not form pulses but maintains operational simplicity and highly efficient pump power utilization.
The FM-OPO microcomb contributes a new approach to the field of microcombs and promises to herald an era of miniaturized precision measurement.
arXiv Detail & Related papers (2023-07-09T15:08:48Z) - Engineering Optical and Mirror Bi-stability Mechanically [0.0]
We show that the optomechanical coupling, electromechanical Coulomb coupling and, amplitude & phase of external modulating fields are important parameters to control the optical and mirror displacement bistable behaviour.
The study may be applied to the realization of a tunable electro opto mechanical switch depending on the optomechanical and Coulomb coupling, frequencies, threshold power, and the amplitude and phase of external mechanical pumps.
arXiv Detail & Related papers (2023-07-07T07:26:41Z) - Direct laser-written optomechanical membranes in fiber Fabry-Perot
cavities [41.94295877935867]
We demonstrate a cavity optomechanical experiment using 3D-laser-written polymer membranes inside fiber Fabry-Perot cavities.
We observe optomechanical spring tuning of the mechanical resonator by tens of kHz exceeding its linewidth at cryogenic temperatures.
arXiv Detail & Related papers (2022-12-27T16:02:03Z) - Enhanced nonlinear optomechanics in a coupled-mode photonic crystal
device [0.0]
We show enhancement of nonlinear optomechanical measurement of mechanical motion by using pairs of coupled optical and mechanical modes.
We envision broad use of this enhancement scheme in multimode phonon lasing, two-phonon heralding and eventually nonlinear quantum optomechanics.
arXiv Detail & Related papers (2022-07-22T14:40:06Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Strong mechanical squeezing in a standard optomechanical system by pump
modulation [0.4893345190925178]
We propose a simple yet surprisingly effective mechanical squeezing scheme in a standard optomechanical system.
By merely introducing a specific kind of periodic modulation into the single-tone driving field to cool down the mechanical Bogoliubov mode, the far beyond 3-dB strong mechanical squeezing can be engineered.
arXiv Detail & Related papers (2020-06-19T05:00:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.