論文の概要: Neural Motion Planning for Autonomous Parking
- arxiv url: http://arxiv.org/abs/2111.06739v1
- Date: Fri, 12 Nov 2021 14:29:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 14:57:35.335145
- Title: Neural Motion Planning for Autonomous Parking
- Title(参考訳): 自律駐車のためのニューラルモーション計画
- Authors: Dongchan Kim and Kunsoo Huh
- Abstract要約: 本稿では,より深い生成ネットワークと従来の動き計画手法を組み合わせたハイブリッドな動き計画手法を提案する。
提案手法は与えられた状態の表現を効果的に学習し,アルゴリズムの性能向上を示す。
- 参考スコア(独自算出の注目度): 6.1805402105389895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a hybrid motion planning strategy that combines a deep
generative network with a conventional motion planning method. Existing
planning methods such as A* and Hybrid A* are widely used in path planning
tasks because of their ability to determine feasible paths even in complex
environments; however, they have limitations in terms of efficiency. To
overcome these limitations, a path planning algorithm based on a neural
network, namely the neural Hybrid A*, is introduced. This paper proposes using
a conditional variational autoencoder (CVAE) to guide the search algorithm by
exploiting the ability of CVAE to learn information about the planning space
given the information of the parking environment. A non-uniform expansion
strategy is utilized based on a distribution of feasible trajectories learned
in the demonstrations. The proposed method effectively learns the
representations of a given state, and shows improvement in terms of algorithm
performance.
- Abstract(参考訳): 本稿では,より深い生成ネットワークと従来の動き計画手法を組み合わせたハイブリッドな動き計画手法を提案する。
A*やHybrid A*といった既存の計画手法は、複雑な環境においても実現可能な経路を決定する能力があるため、経路計画タスクで広く用いられているが、効率の面で制限がある。
これらの制限を克服するため、ニューラルネットワーク、すなわちニューラルハイブリッドA*に基づく経路計画アルゴリズムが導入された。
本稿では,条件付き変分オートエンコーダ(CVAE)を用いて,駐車環境の情報をもとに,CVAEが計画空間に関する情報を学習する能力を利用した探索アルゴリズムを提案する。
非一様展開戦略は、実演で学んだ実現可能な軌道の分布に基づいて活用される。
提案手法は,与えられた状態の表現を効果的に学習し,アルゴリズムの性能向上を示す。
関連論文リスト
- Potential Based Diffusion Motion Planning [73.593988351275]
本稿では,潜在的行動計画の学習に向けた新しいアプローチを提案する。
我々はニューラルネットワークを訓練し、運動計画軌跡よりも容易に最適化可能なポテンシャルを捕捉し、学習する。
我々は、その固有の構成可能性を示し、様々な動きの制約に一般化することができる。
論文 参考訳(メタデータ) (2024-07-08T17:48:39Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
経路計画はロボット工学と自律航法における基本的な科学的問題である。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
本稿では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力とを相乗的に組み合わせた LLM ベースの経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:24:30Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Learning Coverage Paths in Unknown Environments with Deep Reinforcement Learning [17.69984142788365]
被覆経路計画 (CPP) は、制限された領域の自由空間全体をカバーする経路を見つける問題である。
この課題に対する強化学習の適性について検討する。
本稿では,フロンティアに基づく計算可能なエゴセントリックマップ表現と,全変動に基づく新たな報酬項を提案する。
論文 参考訳(メタデータ) (2023-06-29T14:32:06Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
本研究では,高度行動計画のための訓練された深層強化学習ポリシーを用いる方法を提案する。
私たちの知る限りでは、この研究は、この方法で深層強化学習を適用した最初のものである。
論文 参考訳(メタデータ) (2023-04-17T13:49:55Z) - Optimal Solving of Constrained Path-Planning Problems with Graph
Convolutional Networks and Optimized Tree Search [12.457788665461312]
本稿では,機械学習モデルと最適解法を併用したハイブリッド問題解決プランナを提案する。
我々は現実的なシナリオで実験を行い、GCNのサポートにより、より難しい問題に対して、大幅なスピードアップとスムーズなスケーリングが可能になることを示す。
論文 参考訳(メタデータ) (2021-08-02T16:53:21Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Planning for Novelty: Width-Based Algorithms for Common Problems in
Control, Planning and Reinforcement Learning [6.053629733936546]
幅に基づくアルゴリズムは、状態の新規性の一般的な定義を通じて解を探索する。
これらのアルゴリズムは、古典的な計画において最先端のパフォーマンスをもたらすことが示されている。
論文 参考訳(メタデータ) (2021-06-09T07:46:19Z) - Waypoint Planning Networks [66.72790309889432]
本稿では,ローカルカーネル(A*のような古典的アルゴリズム)と学習アルゴリズムを用いたグローバルカーネルを用いたLSTMに基づくハイブリッドアルゴリズムを提案する。
我々は、WPNとA*を比較し、動き計画ネットワーク(MPNet)やバリューネットワーク(VIN)を含む関連する作業と比較する。
WPN の探索空間は A* よりもかなり小さいが、ほぼ最適な結果が得られることが示されている。
論文 参考訳(メタデータ) (2021-05-01T18:02:01Z) - Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning [0.0]
本稿では,Deep Q-Networkの形式でのエクスペリエンスを,探索アルゴリズムの最適ポリシとして統合する方法について述べる。
本手法は、自動運転車分野における強化学習に基づく計画の適用性について、さらなる研究を奨励する可能性がある。
論文 参考訳(メタデータ) (2021-02-05T12:08:11Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。