Simulating Diffusion Bridges with Score Matching
- URL: http://arxiv.org/abs/2111.07243v3
- Date: Wed, 18 Jun 2025 07:35:46 GMT
- Title: Simulating Diffusion Bridges with Score Matching
- Authors: Jeremy Heng, Valentin De Bortoli, Arnaud Doucet, James Thornton,
- Abstract summary: We consider the problem of simulating diffusion bridges, which are diffusion processes that are conditioned to initialize and terminate at two given states.<n>This article contributes to this rich body of literature by presenting a new avenue to obtain diffusion bridge approximations.
- Score: 35.28393521329226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of simulating diffusion bridges, which are diffusion processes that are conditioned to initialize and terminate at two given states. The simulation of diffusion bridges has applications in diverse scientific fields and plays a crucial role in the statistical inference of discretely-observed diffusions. This is known to be a challenging problem that has received much attention in the last two decades. This article contributes to this rich body of literature by presenting a new avenue to obtain diffusion bridge approximations. Our approach is based on a backward time representation of a diffusion bridge, which may be simulated if one can time-reverse the unconditioned diffusion. We introduce a variational formulation to learn this time-reversal with function approximation and rely on a score matching method to circumvent intractability. Another iteration of our proposed methodology approximates the Doob's $h$-transform defining the forward time representation of a diffusion bridge. We discuss algorithmic considerations and extensions, and present numerical results on an Ornstein--Uhlenbeck process, a model from financial econometrics for interest rates, and a model from genetics for cell differentiation and development to illustrate the effectiveness of our approach.
Related papers
- Provable Maximum Entropy Manifold Exploration via Diffusion Models [58.89696361871563]
Exploration is critical for solving real-world decision-making problems such as scientific discovery.<n>We introduce a novel framework that casts exploration as entropy over approximate data manifold implicitly defined by a pre-trained diffusion model.<n>We develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model.
arXiv Detail & Related papers (2025-06-18T11:59:15Z) - Generalized Interpolating Discrete Diffusion [65.74168524007484]
Masked diffusion is a popular choice due to its simplicity and effectiveness.<n>We generalize a new family of general interpolating discrete diffusion (GIDD) which offers greater flexibility in the design of the noising processes.<n>Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality.
arXiv Detail & Related papers (2025-03-06T14:30:55Z) - Neural Guided Diffusion Bridges [2.048226951354646]
We propose a novel method for simulating conditioned diffusion processes (diffusion bridges) in Euclidean spaces.
By training a neural network to approximate bridge dynamics, our approach eliminates the need for computationally intensive Markov Chain Monte Carlo (MCMC) methods.
arXiv Detail & Related papers (2025-02-17T15:28:19Z) - A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.
Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.
This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport [24.90486913773359]
In recent years, the knowledge surrounding diffusion models(DMs) has grown significantly, though several theoretical gaps remain.
This paper explores the deeper relationship between optimal transport(OT) theory and DMs with discrete initial distribution.
We prove that as the diffusion termination time increases, the probability flow exponentially converges to the gradient of the solution to the classical Monge-Ampere equation.
arXiv Detail & Related papers (2024-10-17T10:54:55Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
We propose Diffusion State-Guided Projected Gradient (DiffStateGrad) for inverse problems.
DiffStateGrad projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process.
We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise.
arXiv Detail & Related papers (2024-10-04T14:26:54Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.<n>Our method treats the time dimension of a video as the batch dimension image diffusion models.<n>We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Simulating infinite-dimensional nonlinear diffusion bridges [1.747623282473278]
The diffusion bridge is a type of diffusion process that conditions on hitting a specific state within a finite time period.
We present a solution by merging score-matching techniques with operator learning, enabling a direct approach to score-matching for the infinite-dimensional bridge.
arXiv Detail & Related papers (2024-05-28T16:52:52Z) - Adversarial Schrödinger Bridge Matching [66.39774923893103]
Iterative Markovian Fitting (IMF) procedure alternates between Markovian and reciprocal projections of continuous-time processes.
We propose a novel Discrete-time IMF (D-IMF) procedure in which learning of processes is replaced by learning just a few transition probabilities in discrete time.
We show that our D-IMF procedure can provide the same quality of unpaired domain translation as the IMF, using only several generation steps instead of hundreds.
arXiv Detail & Related papers (2024-05-23T11:29:33Z) - Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization [10.011338977476804]
Multi-source localization from a single snap-shot observation is especially relevant due to its prevalence.
Current methods typically utilizes and greedy selection, and they are usually bonded with one diffusion model.
We propose a simulation-based method termed BOSouL to approximate the results for its sample efficiency.
arXiv Detail & Related papers (2024-03-25T14:46:24Z) - Prompt-tuning latent diffusion models for inverse problems [72.13952857287794]
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors.
Our method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
arXiv Detail & Related papers (2023-10-02T11:31:48Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - Diffusion Bridge Mixture Transports, Schr\"odinger Bridge Problems and
Generative Modeling [4.831663144935879]
We propose a novel sampling-based iterative algorithm, the iterated diffusion bridge mixture (IDBM) procedure, aimed at solving the dynamic Schr"odinger bridge problem.
The IDBM procedure exhibits the attractive property of realizing a valid transport between the target probability measures at each iteration.
arXiv Detail & Related papers (2023-04-03T12:13:42Z) - Where to Diffuse, How to Diffuse, and How to Get Back: Automated
Learning for Multivariate Diffusions [22.04182099405728]
Diffusion-based generative models (DBGMs) perturb data to a target noise distribution and reverse this inference diffusion process to generate samples.
We show how to maximize a lower-bound on the likelihood for any number of auxiliary variables.
We then demonstrate how to parameterize the diffusion for a specified target noise distribution.
arXiv Detail & Related papers (2023-02-14T18:57:04Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.