論文の概要: Adaptive Cost-Sensitive Learning in Neural Networks for
Misclassification Cost Problems
- arxiv url: http://arxiv.org/abs/2111.07382v1
- Date: Sun, 14 Nov 2021 16:19:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 14:36:54.325212
- Title: Adaptive Cost-Sensitive Learning in Neural Networks for
Misclassification Cost Problems
- Title(参考訳): 誤分類コスト問題に対するニューラルネットワークの適応的コスト感学習
- Authors: Ohad Volk, Gonen Singer
- Abstract要約: 誤分類コスト問題に対する適応学習アルゴリズムを設計する。
我々のアルゴリズムは、トレーニングにおけるサンプルのサブグループと、同様の予測された確率を持つテストデータセットのクラス分布の違いを橋渡しする。
本稿では,提案アルゴリズムを用いたディープニューラルネットワークが,クラス不均衡分布とクラス不均衡分布を持つ複数のバイナリ分類データセットに対して,他のアプローチと比較して,より良いコスト結果をもたらすことを示す。
- 参考スコア(独自算出の注目度): 2.8935588665357077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design a new adaptive learning algorithm for misclassification cost
problems that attempt to reduce the cost of misclassified instances derived
from the consequences of various errors. Our algorithm (adaptive cost sensitive
learning - AdaCSL) adaptively adjusts the loss function such that the
classifier bridges the difference between the class distributions between
subgroups of samples in the training and test data sets with similar predicted
probabilities (i.e., local training-test class distribution mismatch). We
provide some theoretical performance guarantees on the proposed algorithm and
present empirical evidence that a deep neural network used with the proposed
AdaCSL algorithm yields better cost results on several binary classification
data sets that have class-imbalanced and class-balanced distributions compared
to other alternative approaches.
- Abstract(参考訳): 種々のエラーの結果から得られた誤分類インスタンスのコストを削減しようとする,誤り分類コスト問題に対する適応学習アルゴリズムを設計する。
本アルゴリズム (adaptive cost sensitive learning - adacsl) は、学習中のサンプルのサブグループ間のクラス分布と、予測された確率(すなわち、局所的なトレーニングとテストのクラス分布のミスマッチ)との違いを橋渡しするように、損失関数を適応的に調整する。
本稿では,提案アルゴリズムの理論的性能保証と,提案アルゴリズムで使用されるディープニューラルネットワークが,クラス不均衡分布とクラス不均衡分布を持つ複数のバイナリ分類データセットに対して,他のアプローチと比較して,より良いコスト効果をもたらすことを示す。
関連論文リスト
- Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:02:42Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - A Hybrid Approach for Binary Classification of Imbalanced Data [0.0]
本稿では,データブロック構築,次元減少,アンサンブル学習を併用したハイブリットアプローチHADRを提案する。
我々は、8つの不均衡な公開データセットの性能をリコール、G平均、AUCで評価した。
論文 参考訳(メタデータ) (2022-07-06T15:18:41Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Envelope Imbalance Learning Algorithm based on Multilayer Fuzzy C-means
Clustering and Minimum Interlayer discrepancy [14.339674126923903]
本稿では,マルチ層ファジィc-means(MlFCM)と最小層間離散化機構(MIDMD)を用いたディープインスタンスエンベロープネットワークに基づく不均衡学習アルゴリズムを提案する。
このアルゴリズムは、事前の知識がなければ、ディープインスタンスエンベロープネットワークを使用して、高品質なバランスの取れたインスタンスを保証できる。
論文 参考訳(メタデータ) (2021-11-02T04:59:57Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
本稿では,2種類の不均衡データ分類のための遺伝的プログラミング(GP)に基づくハイブリッドアンサンブルアルゴリズムを提案する。
実験結果から,提案手法をトレーニングセットのサイズで指定したデータセット上での性能は,マイノリティクラス予測の他の次元よりも40%,50%高い精度を示した。
論文 参考訳(メタデータ) (2021-06-02T14:14:38Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
最適化の原理に基づく適応型サンプリングアルゴリズムを提案し,その性能に関する理論的境界を導出する。
特定の問題のクラスに対してアルゴリズム独立なローバウンドを導出することにより,適応スキームによる性能は一般に改善できないことを示した。
論文 参考訳(メタデータ) (2021-03-01T04:58:27Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
トレーニングセットとテストセット間の音響音声の統計的分布のミスマッチにより,音声言語識別(SLID)の性能が大幅に低下する可能性がある。
SLIDの分布ミスマッチ問題に対処するために,教師なしニューラル適応モデルを提案する。
論文 参考訳(メタデータ) (2020-12-24T07:37:19Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
そこで本稿では,CVAE (Conditional Variational Autoencoder) を用いたOCD(Over-Complete Distribution) の生成を提案する。
フレームワークの有効性は,Zero-Shot LearningプロトコルとGeneralized Zero-Shot Learningプロトコルの両方を用いて評価する。
論文 参考訳(メタデータ) (2020-04-01T19:05:28Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
このようなシナリオ下でのConvNetの学習について検討する。
私たちは、ConvNetがマイナーなクラスにかなり適合していることに気づきました。
クラス依存型温度トレーニング(CDT)のConvNetの導入を提案する。
論文 参考訳(メタデータ) (2020-01-06T03:52:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。