論文の概要: Switching Recurrent Kalman Networks
- arxiv url: http://arxiv.org/abs/2111.08291v1
- Date: Tue, 16 Nov 2021 08:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 00:43:47.243912
- Title: Switching Recurrent Kalman Networks
- Title(参考訳): リカレントカルマンネットワークの切り替え
- Authors: Giao Nguyen-Quynh, Philipp Becker, Chen Qiu, Maja Rudolph, Gerhard
Neumann
- Abstract要約: 本稿では,非線形およびマルチモーダル時系列データに対する効率的な推測と予測のためのスイッチング・リカレント・カルマン・ネットワーク(SRKN)を提案する。
我々は、ポルト市内のタクシーから得られたおもちゃのデータセットと実際の運転データに基づいて、その結果のスケーラブルで解釈可能なディープステートスペースモデルを実証的にテストする。
- 参考スコア(独自算出の注目度): 19.262453343037116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting driving behavior or other sensor measurements is an essential
component of autonomous driving systems. Often real-world multivariate time
series data is hard to model because the underlying dynamics are nonlinear and
the observations are noisy. In addition, driving data can often be multimodal
in distribution, meaning that there are distinct predictions that are likely,
but averaging can hurt model performance. To address this, we propose the
Switching Recurrent Kalman Network (SRKN) for efficient inference and
prediction on nonlinear and multi-modal time-series data. The model switches
among several Kalman filters that model different aspects of the dynamics in a
factorized latent state. We empirically test the resulting scalable and
interpretable deep state-space model on toy data sets and real driving data
from taxis in Porto. In all cases, the model can capture the multimodal nature
of the dynamics in the data.
- Abstract(参考訳): 運転行動の予測やその他のセンサ測定は、自動運転システムの必須要素である。
実世界の多変量時系列データは、基礎となる力学が非線形で観測がうるさいため、しばしばモデル化が難しい。
さらに、データ駆動は、しばしば分散においてマルチモーダルである。つまり、予測は異なるが、平均化はモデルの性能を損なう可能性がある。
そこで本稿では,非線形およびマルチモーダル時系列データの効率的な推測と予測を行うためのスイッチング・リカレント・カルマン・ネットワーク(SRKN)を提案する。
モデルは、係数化潜在状態におけるダイナミクスの異なる側面をモデル化するカルマンフィルタを切り替える。
筆者らは,toy data setとportoのタクシーの運転データを用いて,スケーラブルで解釈可能なディープステートスペースモデルを実証的にテストした。
いずれの場合も、モデルはデータのダイナミクスのマルチモーダルな性質を捉えることができる。
関連論文リスト
- Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows [13.540998552232006]
本研究では,人間の運転行動確率分布の多様性とテール量子化を正確に把握する学習モデルの問題点を考察する。
この設定に2つのフレキシブルな量子学習フレームワークを適用し、強い分布仮定を避ける。
我々は1ステップの加速予測タスクと複数ステップのドライバーシミュレーションのロールアウトでアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-22T15:09:04Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
自律運転システムは、世界の抽象的な記述を形成するために、様々なセンサから収集した情報を効果的に活用すべきである。
オートエンコーダのようなディープラーニングモデルは、受信データのストリームからコンパクトな潜在表現を学習できるため、その目的のために使用できる。
この研究は、自動エンコーダとリカレントニューラルネットワークを組み合わせて現在の潜伏表現を学習する、複合dynAmicautoencodeRネットワークアーキテクチャであるCARNetを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:15:42Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Identifying nonlinear dynamical systems from multi-modal time series
data [3.721528851694675]
物理学、生物学、医学における経験的に観察された時系列は、一般的に、基礎となる力学系(DS)によって生成される。
完全にデータ駆動で教師なしの方法で、この潜伏するDSを再構築するための機械学習手法の収集への関心が高まっている。
本稿では,非線形DS識別とクロスモーダル予測を目的としたマルチモーダルデータ統合のための汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-04T14:59:28Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Variational Dynamic Mixtures [18.730501689781214]
逐次潜伏変数を推定するための変分動的混合(VDM)を開発した。
実証実験により、VDMは、高マルチモーダルデータセットにおける競合するアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-20T16:10:07Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。