論文の概要: Online Estimation and Optimization of Utility-Based Shortfall Risk
- arxiv url: http://arxiv.org/abs/2111.08805v1
- Date: Tue, 16 Nov 2021 22:16:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 00:59:06.967132
- Title: Online Estimation and Optimization of Utility-Based Shortfall Risk
- Title(参考訳): ユーティリティベース不足リスクのオンライン推定と最適化
- Authors: Arvind S. Menon, Prashanth L.A. and Krishna Jagannathan
- Abstract要約: UBSR(Utility-Based Shortfall Risk)の推定問題について考察する。
UBSR推定問題をルート探索問題とみなし,近似に基づく推定手法を提案する。
サンプル数における推定誤差の非漸近境界を導出する。
- 参考スコア(独自算出の注目度): 8.239631885389382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Utility-Based Shortfall Risk (UBSR) is a risk metric that is increasingly
popular in financial applications, owing to certain desirable properties that
it enjoys. We consider the problem of estimating UBSR in a recursive setting,
where samples from the underlying loss distribution are available
one-at-a-time. We cast the UBSR estimation problem as a root finding problem,
and propose stochastic approximation-based estimations schemes. We derive
non-asymptotic bounds on the estimation error in the number of samples. We also
consider the problem of UBSR optimization within a parameterized class of
random variables. We propose a stochastic gradient descent based algorithm for
UBSR optimization, and derive non-asymptotic bounds on its convergence.
- Abstract(参考訳): ユーティリティ・ベース・ショートフォール・リスク(ubsr: utility-based shortfall risk)は、特定の望ましい資産のために金融アプリケーションでますます人気が高まっているリスク指標である。
本稿では,UBSR を再帰的に推定する問題について考察する。
UBSR推定問題をルート探索問題とし,確率近似に基づく推定手法を提案する。
サンプル数における推定誤差の非漸近境界を導出する。
また,変数のパラメータ化クラスにおけるUBSR最適化の問題についても検討する。
ubsr最適化のための確率的勾配降下に基づくアルゴリズムを提案し,その収束に関する非漸近境界を導出する。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Optimization of utility-based shortfall risk: A non-asymptotic viewpoint [11.907026010541674]
ユーティリティ・ベース・ショートフォールリスク(UBSR)の推定と最適化の問題点を考察する。
UBSR推定の文脈では、UBSRの古典的サンプル平均近似(SAA)の平均二乗誤差に基づく非漸近境界を導出する。
UBSR最適化のための勾配アルゴリズムの速度を定量化する非漸近境界を導出する。
論文 参考訳(メタデータ) (2023-10-28T15:57:58Z) - Accelerated stochastic approximation with state-dependent noise [7.4648480208501455]
勾配観測における2次雑音に対する一般仮定の下での滑らかな凸最適化問題を考察する。
このような問題は、統計学におけるよく知られた一般化された線形回帰問題において、様々な応用において自然に発生する。
SAGDとSGEは、適切な条件下で、最適収束率を達成することを示す。
論文 参考訳(メタデータ) (2023-07-04T06:06:10Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Nonconvex sparse regularization for deep neural networks and its
optimality [1.9798034349981162]
ディープニューラルネットワーク(DNN)推定器は、回帰と分類問題に対して最適な収束率を得ることができる。
スパースDNNに対する新たなペナル化推定法を提案する。
スパースペンタライズされた推定器は、様々な非パラメトリック回帰問題に対する最小収束率を適応的に達成できることを示す。
論文 参考訳(メタデータ) (2020-03-26T07:15:28Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
我々は平均分散MABのためのトンプソンサンプリング型アルゴリズムを開発した。
我々はまた、ガウシアンとベルヌーイの盗賊に対する包括的後悔の分析も提供する。
我々のアルゴリズムは、全てのリスク許容度に対して既存のLCBベースのアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2020-02-01T15:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。