Quantum non-Gaussianity of multi-phonon states of a single atom
- URL: http://arxiv.org/abs/2111.10129v2
- Date: Mon, 8 Apr 2024 13:17:30 GMT
- Title: Quantum non-Gaussianity of multi-phonon states of a single atom
- Authors: Lukas Podhora, Lukas Lachman, Tuan Pham, Adam Lesundak, Ondrej Cip, Lukas Slodicka, Radim Filip,
- Abstract summary: We derive the most challenging hierarchy of quantum non-Gaussian criteria for the individual mechanical Fock states.
We analyze the depth of quantum non-Gaussian features under mechanical heating and predict their application in quantum sensing.
- Score: 0.7381551917607596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum non-Gaussian mechanical states from inherently nonlinear quantum processes are already required in a range of applications spanning from quantum sensing up to quantum computing with continuous variables. The discrete building blocks of such states are the energy eigenstates - Fock states. Despite the progress in their preparation, the remaining imperfections can still invisibly cause loss of the critical quantum non-Gaussian aspects of the phonon distribution relevant in the applications. We derive the most challenging hierarchy of quantum non-Gaussian criteria for the individual mechanical Fock states and demonstrate its implementation on the characterization of single trapped-ion oscillator states up to 10~phonons. We analyze the depth of quantum non-Gaussian features under mechanical heating and predict their application in quantum sensing. These results uncover that the crucial quantum non-Gaussian features are demanded to reach quantum advantage in the applications.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Non-Gaussian States of Superfluid Helium Vibrations [0.0]
Quantum non-Gaussian states of phononic systems coupled to light are essential for studies of single-phonon mechanics.
We propose the quantum non-Gaussian generation of few-phonon states of low-temperature vibrating super Helium.
arXiv Detail & Related papers (2024-06-14T10:59:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum non-Gaussianity of light and atoms [0.0]
Quantum non-Gaussian states of photons and phonons are conclusive witnesses of higher-than-quadratic nonlinearities in optical and mechanical processes.
This review introduces theoretical analyses of nonclassical and quantum non-Gaussian states of photons and phonons.
arXiv Detail & Related papers (2022-06-05T19:48:41Z) - Deterministic Preparation of Non-Gaussian Quantum States: Applications
in Quantum Information Protocols [0.0]
We present a scheme that can prepare non-Gaussian quantum states on-demand, by applying a unitary transformation.
The resulting state exhibits a quantum vortex structure in quadrature space, confirming its non-Gaussian nature.
Such non-Gaussian quantum state also reveals increased entanglement content, as quantified by the Logarithmic Negativity and the Wigner function negative volume.
arXiv Detail & Related papers (2021-10-07T05:42:27Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Non-Gaussianity From An Indefinite Causal Order of Gaussian
Operations [0.0]
Quantum Non-Gaussian states are considered as a useful resource for many tasks in quantum information processing.
We are addressing to be very useful to engineer highly non-Gaussian states from operations whose order is controlled by degrees of freedom of a control qubit.
arXiv Detail & Related papers (2021-08-30T09:20:17Z) - Non-Gaussian Quantum States and Where to Find Them [0.0]
We show how non-Gaussian states can be created by performing measurements on a subset of modes in a Gaussian state.
We demonstrate that Wigner negativity is a requirement to violate Bell inequalities and to achieve a quantum computational advantage.
arXiv Detail & Related papers (2021-04-26T13:59:41Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.