Quantum non-Gaussian coherences of an oscillating atom
- URL: http://arxiv.org/abs/2412.09249v1
- Date: Thu, 12 Dec 2024 13:03:10 GMT
- Title: Quantum non-Gaussian coherences of an oscillating atom
- Authors: A. Kovalenko, L. Lachman, T. Pham, K. Singh, O. Číp, L. Slodička, R. Filip,
- Abstract summary: Even the most elementary binary superpositions of the ground and the higher eigenstate are highly required for quantum sensing, thermodynamics, and computing.
We derive upper bounds for quantum coherences achieved by classical and Gaussian states and operations.
We experimentally demonstrate unambiguous observation of quantum non-Gaussian coherences in mechanical vibrations.
- Score: 0.0
- License:
- Abstract: Quantum coherence between energy eigenstates of harmonic oscillators is essential for quantum physics. Even the most elementary binary superpositions of the ground and the higher eigenstate are highly required for quantum sensing, thermodynamics, and computing. We derive upper bounds for quantum coherences achieved by classical and Gaussian states and operations and, subsequently, obtain a hierarchy of the thresholds for the off-diagonal elements necessary to reach genuine quantum non-Gaussian coherences. We experimentally demonstrate unambiguous observation of quantum non-Gaussian coherences in mechanical vibrations of a single calcium ion up to the superposition of zero and six phonons. The analysis of the robustness with respect to pure dephasing in a motional Ramsey experiment demonstrates the feasibility of their storage for up to more than 20 ms for superpositions with a large energy difference of participating number states. The presented observations prove that atomic oscillations go deeply into a diverse area of discrete quantum non-Gaussian coherent phenomena critical for their applications.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Effect of Quantum Statistics on Computational Power of Atomic Quantum
Annealers [6.013018381423765]
We study how the quantum statistics affects the computational power of quantum annealing.
We find that the bosonic quantum annealer outperforms the fermionic case.
Our theoretical finding could shed light on constructing atomic quantum annealers using Rydberg atoms in optical lattices.
arXiv Detail & Related papers (2022-09-01T03:33:20Z) - Controlling Collective Phenomena by Engineering the Quantum State of
Force Carriers: The Case of Photon-Mediated Superconductivity and its
Criticality [0.0]
How are the scattering between the constituents of matter and the resulting collective phenomena affected by preparing the force carriers in different quantum states?
This question has become experimentally relevant in a specific non-relativistic version of QED implemented within materials.
We show that by preparing photons in pure Fock states one can enhance pair correlations, and even control the criticality and universality of the superconducting phase transition by the choice of the number of photons.
arXiv Detail & Related papers (2022-07-14T18:00:05Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum non-Gaussianity of multi-phonon states of a single atom [0.7381551917607596]
We derive the most challenging hierarchy of quantum non-Gaussian criteria for the individual mechanical Fock states.
We analyze the depth of quantum non-Gaussian features under mechanical heating and predict their application in quantum sensing.
arXiv Detail & Related papers (2021-11-19T09:58:22Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.