Satellite Based Computing Networks with Federated Learning
- URL: http://arxiv.org/abs/2111.10586v1
- Date: Sat, 20 Nov 2021 13:24:23 GMT
- Title: Satellite Based Computing Networks with Federated Learning
- Authors: Hao Chen, Ming Xiao, and Zhibo Pang
- Abstract summary: A new generation of wireless communication, the sixth-generation (6G) mobile system enhanced by artificial intelligence (AI) has attracted substantial research interests.
Among various candidate technologies of 6G, low earth orbit (LEO) satellites have appealing characteristics of ubiquitous wireless access.
To support massively interconnected devices with intelligent adaptive learning and reduce expensive traffic in SatCom, we propose federated learning (FL) in LEO-based satellite communication networks.
- Score: 30.090106801185886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by the ever-increasing penetration and proliferation of data-driven
applications, a new generation of wireless communication, the sixth-generation
(6G) mobile system enhanced by artificial intelligence (AI), has attracted
substantial research interests. Among various candidate technologies of 6G, low
earth orbit (LEO) satellites have appealing characteristics of ubiquitous
wireless access. However, the costs of satellite communication (SatCom) are
still high, relative to counterparts of ground mobile networks. To support
massively interconnected devices with intelligent adaptive learning and reduce
expensive traffic in SatCom, we propose federated learning (FL) in LEO-based
satellite communication networks. We first review the state-of-the-art
LEO-based SatCom and related machine learning (ML) techniques, and then analyze
four possible ways of combining ML with satellite networks. The learning
performance of the proposed strategies is evaluated by simulation and results
reveal that FL-based computing networks improve the performance of
communication overheads and latency. Finally, we discuss future research topics
along this research direction.
Related papers
- Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
This paper proposes NomaFedHAP, a novel FL-SatCom approach tailored to LEO satellites.
NomaFedHAP utilizes high-altitude platforms (HAPs) as distributed parameter servers (PS) to enhance satellite visibility.
We derive a closed-form expression of the outage probability for satellites in near and far shells, as well as for the entire system.
arXiv Detail & Related papers (2024-01-01T07:07:27Z) - Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading [33.44828515877944]
We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
arXiv Detail & Related papers (2023-12-23T22:09:31Z) - Artificial Intelligence Techniques for Next-Generation Mega Satellite
Networks [37.87439415970645]
This article introduces the application of AI techniques for integrated terrestrial satellite networks, particularly massive satellite network communications.
It details the unique features of massive satellite networks, and the overarching challenges concomitant with their integration into the current communication infrastructure.
This entails applying AI for forecasting the highly dynamic radio channel, spectrum sensing and classification, signal detection and demodulation, inter-satellite and satellite access network optimization, and network security.
arXiv Detail & Related papers (2022-06-02T13:56:32Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.