論文の概要: Dynamic imaging using motion-compensated smoothness regularization on
manifolds (MoCo-SToRM)
- arxiv url: http://arxiv.org/abs/2111.10887v1
- Date: Sun, 21 Nov 2021 19:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 05:38:11.167662
- Title: Dynamic imaging using motion-compensated smoothness regularization on
manifolds (MoCo-SToRM)
- Title(参考訳): 運動補償平滑化による多様体(MoCo-SToRM)の動的イメージング
- Authors: Qing Zou, Luis A. Torres, Sean B. Fain, Mathews Jacob
- Abstract要約: 運動補償動的MRIのための教師なし深部多様体学習アルゴリズムを提案する。
このアルゴリズムの有用性は、運動補償高分解能肺MRIの文脈で示される。
- 参考スコア(独自算出の注目度): 23.093076134206513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an unsupervised deep manifold learning algorithm for
motion-compensated dynamic MRI. We assume that the motion fields in a
free-breathing lung MRI dataset live on a manifold. The motion field at each
time instant is modeled as the output of a deep generative model, driven by
low-dimensional time-varying latent vectors that capture the temporal
variability. The images at each time instant are modeled as the deformed
version of an image template using the above motion fields. The template, the
parameters of the deep generator, and the latent vectors are learned from the
k-t space data in an unsupervised fashion. The manifold motion model serves as
a regularizer, making the joint estimation of the motion fields and images from
few radial spokes/frame well-posed. The utility of the algorithm is
demonstrated in the context of motion-compensated high-resolution lung MRI.
- Abstract(参考訳): 運動補償動的MRIのための教師なし深部多様体学習アルゴリズムを提案する。
自由呼吸肺MRIデータセットの運動場は多様体上に存在すると仮定する。
各時点の運動場は、時間的変動を捉える低次元の時変潜在ベクトルによって駆動される深い生成モデルの出力としてモデル化される。
各時点での画像は、上記運動場を用いて画像テンプレートの変形バージョンとしてモデル化される。
テンプレート、深部ジェネレータのパラメータ、潜伏ベクトルは、教師なしの方法でk-t空間データから学習される。
マニホールド運動モデルはレギュラライザとして機能し、ラジアルスポークやフレーム配置の少ない動き場と画像のジョイント推定を行う。
このアルゴリズムの有用性は、運動補償高分解能肺MRIの文脈で示される。
関連論文リスト
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
非剛性動作推定のためのローカル・オール・パス・アテンション・ネットワーク(LAPANet)と呼ばれる,自己教師型深層学習に基づく新しいフレームワークを提案する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
論文 参考訳(メタデータ) (2024-10-24T15:19:59Z) - SpaER: Learning Spatio-temporal Equivariant Representations for Fetal Brain Motion Tracking [6.417960463128722]
SpaERは胎児運動追跡の先駆的手法である。
我々は,剛体運動列を効率的に学習する同変ニューラルネットワークを開発した。
シミュレーションおよび実動作を用いた実胎児エコープラナー画像を用いて本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2024-07-29T17:24:52Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Generative Image Dynamics [80.70729090482575]
本研究では,シーン動作に先立って画像空間をモデル化する手法を提案する。
我々の先行研究は、実映像から抽出した動き軌跡の収集から得られたものである。
論文 参考訳(メタデータ) (2023-09-14T17:54:01Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
我々はSceNeRFlowを提案し、時間的一貫性のある方法で一般的な非剛体シーンを再構築する。
提案手法は,カメラパラメータを入力として,静止カメラからのマルチビューRGBビデオと背景画像を取得する。
実験により,小規模動作のみを扱う先行作業とは異なり,スタジオスケール動作の再構築が可能であることが示された。
論文 参考訳(メタデータ) (2023-08-16T09:50:35Z) - MomentaMorph: Unsupervised Spatial-Temporal Registration with Momenta,
Shooting, and Correction [12.281250177881445]
本稿では,反復パターンと大動きの存在下でのラグランジアン運動推定のための新しい枠組みを提案する。
2次元合成データセットと実3次元tMRIデータセットの結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-05T20:32:30Z) - Dynamic imaging using Motion-Compensated SmooThness Regularization on
Manifolds (MoCo-SToRM) [19.70386996879205]
高分解能自由呼吸性肺MRIのための教師なし運動補償再建法を提案する。
時系列画像フレームを3Dテンプレート画像ボリュームの変形版としてモデル化する。
変形写像は高次元空間の滑らかな多様体上の点であると仮定する。
論文 参考訳(メタデータ) (2021-12-06T22:04:57Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
4次元連続時間変動関数を用いて動的シーンをモデル化する表現であるMoCo-Flowを紹介する。
私たちの研究の中心には、運動フロー上の運動コンセンサス正規化によって制約される、新しい最適化の定式化がある。
複雑度の異なる人間の動きを含む複数のデータセット上でMoCo-Flowを広範囲に評価した。
論文 参考訳(メタデータ) (2021-06-08T16:03:50Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Learning a Generative Motion Model from Image Sequences based on a
Latent Motion Matrix [8.774604259603302]
画像列の時間的登録をシミュレートして確率的動きモデルを学ぶ。
3つの最先端登録アルゴリズムと比較して,登録精度と時間的にスムーズな整合性が改善された。
また, フレームの欠落のあるシーケンスからの動作再構成を改良し, 動作解析, シミュレーション, 超解像に対するモデルの適用性を実証した。
論文 参考訳(メタデータ) (2020-11-03T14:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。