論文の概要: Ice hockey player identification via transformers
- arxiv url: http://arxiv.org/abs/2111.11535v1
- Date: Mon, 22 Nov 2021 21:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 14:59:31.900042
- Title: Ice hockey player identification via transformers
- Title(参考訳): トランスフォーマーによるアイスホッケー選手の識別
- Authors: Kanav Vats, William McNally, Pascale Walters, David A. Clausi, John S.
Zelek
- Abstract要約: そこで我々は,NHL(National Hockey League)ビデオで選手のジャージー番号を識別するトランスフォーマーネットワークを導入する。
提案するネットワークは、使用したデータセットの以前のベンチマークよりもパフォーマンスがよい。
また,光学式文字認識(OCR)を用いてゲーム時間を読み取ることで,NHLプレイバイプレイデータで利用可能なプレイヤーシフトを利用して,特定のゲーム時間でプレイヤーをアイスリンクに誘導する。
- 参考スコア(独自算出の注目度): 11.28395713457468
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identifying players in video is a foundational step in computer vision-based
sports analytics. Obtaining player identities is essential for analyzing the
game and is used in downstream tasks such as game event recognition.
Transformers are the existing standard in Natural Language Processing (NLP) and
are swiftly gaining traction in computer vision. Motivated by the increasing
success of transformers in computer vision, in this paper, we introduce a
transformer network for recognizing players through their jersey numbers in
broadcast National Hockey League (NHL) videos. The transformer takes temporal
sequences of player frames (also called player tracklets) as input and outputs
the probabilities of jersey numbers present in the frames. The proposed network
performs better than the previous benchmark on the dataset used. We implement a
weakly-supervised training approach by generating approximate frame-level
labels for jersey number presence and use the frame-level labels for faster
training. We also utilize player shifts available in the NHL play-by-play data
by reading the game time using optical character recognition (OCR) to get the
players on the ice rink at a certain game time. Using player shifts improved
the player identification accuracy by 6%.
- Abstract(参考訳): プレイヤーをビデオで識別することは、コンピュータビジョンに基づくスポーツ分析の基本的なステップである。
ゲーム分析にはプレイヤーのアイデンティティの取得が不可欠であり、ゲームイベント認識などの下流タスクで使用される。
トランスフォーマーは自然言語処理(NLP)の既存の標準であり、コンピュータビジョンにおいて急速に注目を集めている。
本稿では,コンピュータビジョンにおけるトランスフォーマーの成功に触発されて,NHL(National Hockey League)ビデオのジャージ番号でプレイヤーを識別するトランスフォーマーネットワークを提案する。
トランスフォーマーはプレイヤーフレーム(プレイヤートラックレットとも呼ばれる)の一時的なシーケンスを入力として、フレームに存在するジャージ番号の確率を出力する。
提案するネットワークは、使用したデータセットの以前のベンチマークよりもパフォーマンスがよい。
ジャージ数の存在を近似したフレームレベルラベルを生成し,フレームレベルラベルを用いて高速なトレーニングを行う。
また,光学式文字認識(OCR)を用いてゲーム時間を読み取ることで,NHLプレイバイプレイデータで利用可能なプレイヤーシフトを利用して,特定のゲーム時間でプレイヤーをアイスリンクさせる。
プレイヤーシフトを用いることで、プレイヤー識別精度が6%向上した。
関連論文リスト
- A General Framework for Jersey Number Recognition in Sports Video [5.985204759362746]
ジャージーの数字認識はスポーツビデオ解析において重要な課題であり、その理由の一部は長期の選手追跡において重要であるためである。
本稿では,ホッケーのための新しいパブリックジャージ番号認識データセットを紹介し,この問題に対してシーンテキスト認識手法をどのように適用できるかを考察する。
我々は,イメージレベルのタスクとトラックレットレベルのタスクで高いパフォーマンスを示し,ホッケーのイメージでは91.4%,サッカーのトラックレットでは87.4%の精度を達成した。
論文 参考訳(メタデータ) (2024-05-22T18:08:26Z) - SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap [102.5232204867158]
我々は、ゲーム状態再構成のタスクを形式化し、フットボールビデオに焦点を当てた新しいゲーム状態再構成データセットである、サッカーネット-GSRを紹介する。
SoccerNet-GSRは、ピッチローカライゼーションとカメラキャリブレーションのための937万行のアノテートにより、30秒間の200の動画シーケンスで構成されている。
我々の実験は、GSRは挑戦的な新しい課題であり、将来の研究の場を開くことを示している。
論文 参考訳(メタデータ) (2024-04-17T12:53:45Z) - Domain-Guided Masked Autoencoders for Unique Player Identification [62.87054782745536]
マスク付きオートエンコーダ (MAE) は, 従来の特徴抽出器よりも優れた代替手段として出現している。
人間の視覚に触発され、我々はd-MAEと呼ばれるMAEのための新しいドメイン誘導マスキングポリシーを考案した。
3つの大規模スポーツデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-03-17T20:14:57Z) - Jersey Number Recognition using Keyframe Identification from
Low-Resolution Broadcast Videos [7.776923607006088]
プレイヤー識別は、プレイヤーアセスメント、ゲーム内分析、放送アセスメントなどの様々なタスクを可能にする、ビジョン駆動型サッカー分析において重要な要素である。
以前の手法では画像データでは成功したが、ほとんどのフレームではジャージ番号が見えない実世界のビデオデータに苦戦している。
本稿では,ジャージ数に関する重要な高レベル情報を含むフレームを抽出する,ロバストな下流識別モジュールを提案する。
論文 参考訳(メタデータ) (2023-09-12T14:43:50Z) - Efficient Video Action Detection with Token Dropout and Context
Refinement [67.10895416008911]
効率的なビデオアクション検出(ViT)のためのエンドツーエンドフレームワークを提案する。
ビデオクリップでは、他のフレームからのアクターの動きに関連するトークンを保存しながら、その視点でトークンを維持する。
第二に、残ったトークンを利用してシーンコンテキストを洗練し、アクターのアイデンティティをよりよく認識する。
論文 参考訳(メタデータ) (2023-04-17T17:21:21Z) - SVFormer: Semi-supervised Video Transformer for Action Recognition [88.52042032347173]
SVFormerは、未ラベルの動画サンプルに対処するために、安定した擬似ラベルフレームワークを採用する。
さらに,ビデオの複雑な時間変動をカバーするための時間ゆらぎを提案する。
特にSVFormerは、Kinetics-400の1%のラベル付け率でトレーニングエポックを減らし、最先端の技術を31.5%上回っている。
論文 参考訳(メタデータ) (2022-11-23T18:58:42Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - Automated player identification and indexing using two-stage deep
learning network [0.23610495849936355]
本稿では,アメリカンフットボールの試合における選手の参加を自動的に追跡し,その参加度を指標とする深層学習型選手追跡システムを提案する。
関心領域をハイライトし、ジャージ番号情報を高精度に識別するための2段階ネットワーク設計である。
フットボールビデオの質的,定量的な結果を分析することにより,選手追跡システムの有効性と信頼性を実証する。
論文 参考訳(メタデータ) (2022-04-26T02:59:03Z) - Player Tracking and Identification in Ice Hockey [9.577770317771087]
本稿では,NHLホッケー映像の選手の追跡と識別を行う自動システムを提案する。
本システムは,(1)選手追跡,(2)チーム識別,(3)プレイヤー識別の3つのコンポーネントから構成される。
チーム識別では、アウトチームジャージは単一のクラスにグループ化され、ホームチームジャージはそのジャージの色に応じてクラスにグループ化される。
時間的一次元畳み込みネットワークを利用してプレイヤー境界ボックス列からプレイヤーを識別する新しいプレイヤー識別モデルを提案する。
論文 参考訳(メタデータ) (2021-10-06T22:37:08Z) - Player Identification in Hockey Broadcast Videos [18.616544581429835]
我々はNHL放送におけるホッケー選手識別の問題を解決するために,深層畳み込みニューラルネットワークアプローチを提案する。
本稿では,ResNet+LSTMネットワークの出力を分類するために,2次1次元畳み込みニューラルネットワークをレイトスコアレベル融合法として利用する。
これにより、新しいデータセットのテスト分割で、全体的なプレイヤー識別精度が87%以上になる。
論文 参考訳(メタデータ) (2020-09-05T01:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。