DA$^{\textbf{2}}$-Net : Diverse & Adaptive Attention Convolutional
Neural Network
- URL: http://arxiv.org/abs/2111.13157v1
- Date: Thu, 25 Nov 2021 16:25:16 GMT
- Title: DA$^{\textbf{2}}$-Net : Diverse & Adaptive Attention Convolutional
Neural Network
- Authors: Abenezer Girma, Abdollah Homaifar, M Nabil Mahmoud, Xuyang Yan and
Mrinmoy Sarkar
- Abstract summary: DA$2$-Net enables feed-forward CNNs to explicitly capture diverse features and adaptively select and emphasize the most informative features to efficiently boost the network's performance.
We extensively evaluated DA$2$-Net on benchmark datasets, including CIFAR100, SVHN, and ImageNet.
- Score: 0.6999740786886536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard Convolutional Neural Network (CNN) designs rarely focus on the
importance of explicitly capturing diverse features to enhance the network's
performance. Instead, most existing methods follow an indirect approach of
increasing or tuning the networks' depth and width, which in many cases
significantly increases the computational cost. Inspired by a biological visual
system, we propose a Diverse and Adaptive Attention Convolutional Network
(DA$^{2}$-Net), which enables any feed-forward CNNs to explicitly capture
diverse features and adaptively select and emphasize the most informative
features to efficiently boost the network's performance. DA$^{2}$-Net incurs
negligible computational overhead and it is designed to be easily integrated
with any CNN architecture. We extensively evaluated DA$^{2}$-Net on benchmark
datasets, including CIFAR100, SVHN, and ImageNet, with various CNN
architectures. The experimental results show DA$^{2}$-Net provides a
significant performance improvement with very minimal computational overhead.
Related papers
- CTA-Net: A CNN-Transformer Aggregation Network for Improving Multi-Scale Feature Extraction [14.377544481394013]
CTA-Net combines CNNs and ViTs, with transformers capturing long-range dependencies and CNNs extracting localized features.
This integration enables efficient processing of detailed local and broader contextual information.
Experiments on small-scale datasets with fewer than 100,000 samples show that CTA-Net achieves superior performance.
arXiv Detail & Related papers (2024-10-15T09:27:26Z) - Multiscale Low-Frequency Memory Network for Improved Feature Extraction
in Convolutional Neural Networks [13.815116154370834]
We introduce a novel framework, the Multiscale Low-Frequency Memory (MLFM) Network.
The MLFM efficiently preserves low-frequency information, enhancing performance in targeted computer vision tasks.
Our work builds upon the existing CNN foundations and paves the way for future advancements in computer vision.
arXiv Detail & Related papers (2024-03-13T00:48:41Z) - Enhancing Small Object Encoding in Deep Neural Networks: Introducing
Fast&Focused-Net with Volume-wise Dot Product Layer [0.0]
We introduce Fast&Focused-Net, a novel deep neural network architecture tailored for encoding small objects into fixed-length feature vectors.
Fast&Focused-Net employs a series of our newly proposed layer, the Volume-wise Dot Product (VDP) layer, designed to address several inherent limitations of CNNs.
For small object classification tasks, our network outperformed state-of-the-art methods on datasets such as CIFAR-10, CIFAR-100, STL-10, SVHN-Cropped, and Fashion-MNIST.
In the context of larger image classification, when combined with a transformer encoder (ViT
arXiv Detail & Related papers (2024-01-18T09:31:25Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks.
We propose a network structure based on previous work to improve network runtime and accuracy.
arXiv Detail & Related papers (2022-10-31T16:13:15Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
We propose a single CNN architecture equipped with continuous convolutional kernels for tasks on arbitrary resolution, dimensionality and length without structural changes.
We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$mathrmD$) and visual data (2$mathrmD$)
Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
arXiv Detail & Related papers (2022-06-07T15:48:02Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - High-Capacity Expert Binary Networks [56.87581500474093]
Network binarization is a promising hardware-aware direction for creating efficient deep models.
Despite its memory and computational advantages, reducing the accuracy gap between binary models and their real-valued counterparts remains an unsolved challenging research problem.
We propose Expert Binary Convolution, which, for the first time, tailors conditional computing to binary networks by learning to select one data-specific expert binary filter at a time conditioned on input features.
arXiv Detail & Related papers (2020-10-07T17:58:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.