論文の概要: A quantum parallel Markov chain Monte Carlo
- arxiv url: http://arxiv.org/abs/2112.00212v4
- Date: Sun, 19 Mar 2023 22:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:42:55.530237
- Title: A quantum parallel Markov chain Monte Carlo
- Title(参考訳): 量子平行マルコフ連鎖モンテカルロ
- Authors: Andrew J. Holbrook
- Abstract要約: 我々は、Gumbel-max トリックを用いて、一般化されたアセプション-リジェクトステップを離散最適化問題に変換する。
我々はGroverの量子探索アルゴリズムのよく知られた拡張の中にターゲット密度評価を埋め込む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel hybrid quantum computing strategy for parallel MCMC
algorithms that generate multiple proposals at each step. This strategy makes
the rate-limiting step within parallel MCMC amenable to quantum parallelization
by using the Gumbel-max trick to turn the generalized accept-reject step into a
discrete optimization problem. When combined with new insights from the
parallel MCMC literature, such an approach allows us to embed target density
evaluations within a well-known extension of Grover's quantum search algorithm.
Letting $P$ denote the number of proposals in a single MCMC iteration, the
combined strategy reduces the number of target evaluations required from
$\mathcal{O}(P)$ to $\mathcal{O}(P^{1/2})$. In the following, we review the
rudiments of quantum computing, quantum search and the Gumbel-max trick in
order to elucidate their combination for as wide a readership as possible.
- Abstract(参考訳): 本稿では,並列MCMCアルゴリズムに対して,各ステップで複数の提案を生成するハイブリッド量子コンピューティング戦略を提案する。
この戦略は、Gumbel-maxトリックを用いて、並列MCMC内のレート制限ステップを量子並列化に対応させ、一般化されたアセプション-リジェクトステップを離散最適化問題に変換する。
並列mcmc文献からの新たな知見と組み合わせることで、グローバーの量子探索アルゴリズムのよく知られた拡張の中にターゲット密度の評価を組み込むことができる。
P$ を 1 つのMCMC 反復で提案する数を表すと、この組み合わせ戦略は $\mathcal{O}(P)$ から $\mathcal{O}(P^{1/2})$ に要求される目標評価の数を減らす。
本稿では, 量子コンピューティング, 量子探索, Gumbel-max トリックのルーディを概観し, その組み合わせを可能な限り広い読者層に向けて解明する。
関連論文リスト
- A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
本稿では,ゲートベース量子コンピュータ上でのアダマール行列探索アルゴリズムを実装した新しい量子ビット効率法を提案する。
本稿では,本手法の定式化,対応する量子回路の構成,および量子シミュレータと実ゲート型量子コンピュータの両方の実験結果について述べる。
論文 参考訳(メタデータ) (2024-08-15T06:25:50Z) - More Quantum Speedups for Multiproposal MCMC [9.09160682938666]
マルチプロポサルマルコフ連鎖モンテカルロ(MCMC)アルゴリズムは、目標分布をより効率的にサンプリングするために、各イテレーションで複数の提案から選択する。
最近の研究は、そのような多目的MCMCアルゴリズムの2次量子スピードアップの可能性を示している。
QPMCMC2は,ターゲット評価に$mathcalO(1)$と$mathcalO(log P)$ qubitsしか必要としない。
論文 参考訳(メタデータ) (2023-12-03T14:05:08Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
最適行列乗算重み更新(OMMWU)アルゴリズムを導入し,平均収束複雑性を$mathcalO(d/epsilon)$ to $epsilon$-Nash equilibriaとする。
この二次的なスピードアップは、量子ゼロサムゲームにおける$epsilon$-Nash平衡の計算のための新しいベンチマークを定めている。
論文 参考訳(メタデータ) (2023-11-17T20:38:38Z) - QAOA-MC: Markov chain Monte Carlo enhanced by Quantum Alternating
Operator Ansatz [0.6181093777643575]
本稿では,量子交換演算子 Ansatz (QAOA) のモンテカルロへの応用を提案する。
この研究は、現在利用可能な量子コンピュータで実用的な量子優位性を実現するための重要なステップである。
論文 参考訳(メタデータ) (2023-05-15T16:47:31Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
変分量子アルゴリズムは、デジタル量子コンピュータを用いた最適化問題の解法として興味深い可能性を提供する。
しかし、そのようなアルゴリズムにおける達成可能な性能と量子相関の役割は未だ不明である。
我々は、IBM量子チップと同様に、システマティックな手順で高度に圧縮された状態が生成されるかを数値的に示す。
論文 参考訳(メタデータ) (2022-05-20T18:00:06Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。