Collective variable discovery in the age of machine learning: reality,
hype and everything in between
- URL: http://arxiv.org/abs/2112.03202v1
- Date: Mon, 6 Dec 2021 17:58:53 GMT
- Title: Collective variable discovery in the age of machine learning: reality,
hype and everything in between
- Authors: Soumendranath Bhakat
- Abstract summary: Molecular dynamics simulation has been routinely used to understand kinetical dynamics and molecular recognition in biomolecules.
In physical chemistry, these low-dimensional variables often called collective variables.
In this review, I will highlight several nuances of commonly used collective variables ranging from geometric to abstract ones.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding kinetics and thermodynamics profile of biomolecules is
necessary to understand their functional roles which has a major impact in
mechanism driven drug discovery. Molecular dynamics simulation has been
routinely used to understand conformational dynamics and molecular recognition
in biomolecules. Statistical analysis of high-dimensional spatiotemporal data
generated from molecular dynamics simulation requires identification of few
low-dimensional variables which can describe essential dynamics of a system
without significant loss of informations. In physical chemistry, these
low-dimensional variables often called collective variables. Collective
variables are used to generated reduced representation of free energy surface
and calculate transition probabilities between different metastable basins.
However the choice of collective variables is not trivial for complex systems.
Collective variables ranges from geometric criteria's such as distances,
dihedral angles to abstract ones such as weighted linear combinations of
multiple geometric variables. Advent of machine learning algorithms led to
increasing use of abstract collective variables to represent biomolecular
dynamics. In this review, I will highlight several nuances of commonly used
collective variables ranging from geometric to abstract ones. Further, I will
put forward some cases where machine learning based collective variables were
used to describe simple systems which in principle could have been described by
geometric ones. Finally, I will put forward my thoughts on artificial general
intelligence and how it can be used to discover and predict collective
variables from spatiotemporal data generated by molecular dynamics simulations.
Related papers
- Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics [39.412937539709844]
We present a novel framework that jointly models spatial and temporal multiscale interactions in molecular dynamics.
We evaluate our model on the MD17 dataset, demonstrating consistent performance improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-11-03T15:10:48Z) - Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold [83.18058549195855]
We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities.
In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient.
We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations.
arXiv Detail & Related papers (2024-08-26T20:05:31Z) - Decomposing heterogeneous dynamical systems with graph neural networks [0.16492989697868887]
We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneous system.
The learned latent structure and dynamics can be used to virtually decompose the complex system.
arXiv Detail & Related papers (2024-07-27T04:03:12Z) - Information theory for data-driven model reduction in physics and biology [0.0]
We develop a systematic approach based on the information bottleneck to identify the relevant variables.
We show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions.
It provides a firm foundation to construct interpretable deep learning tools that perform model reduction.
arXiv Detail & Related papers (2023-12-11T18:39:05Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Evolution TANN and the discovery of the internal variables and evolution
equations in solid mechanics [0.0]
We propose a new approach which allows, for the first time, to decouple the material representation from the incremental formulation.
Inspired by the Thermodynamics-based Artificial Neural Networks (TANN) and the theory of the internal variables, the evolution TANN (eTANN) are continuous-time.
Key feature of the proposed approach is the discovery of the evolution equations of the internal variables in the form of ordinary differential equations.
arXiv Detail & Related papers (2022-09-27T09:25:55Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.