Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics
- URL: http://arxiv.org/abs/2411.01600v1
- Date: Sun, 03 Nov 2024 15:10:48 GMT
- Title: Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics
- Authors: Fang Sun, Zijie Huang, Haixin Wang, Yadi Cao, Xiao Luo, Wei Wang, Yizhou Sun,
- Abstract summary: We present a novel framework that jointly models spatial and temporal multiscale interactions in molecular dynamics.
We evaluate our model on the MD17 dataset, demonstrating consistent performance improvements over state-of-the-art baselines.
- Score: 39.412937539709844
- License:
- Abstract: Molecular dynamics simulations are crucial for understanding complex physical, chemical, and biological processes at the atomic level. However, accurately capturing interactions across multiple spatial and temporal scales remains a significant challenge. We present a novel framework that jointly models spatial and temporal multiscale interactions in molecular dynamics. Our approach leverages Graph Fourier Transforms to decompose molecular structures into different spatial scales and employs Neural Ordinary Differential Equations to model the temporal dynamics in a curated manner influenced by the spatial modes. This unified framework links spatial structures with temporal evolution in a flexible manner, enabling more accurate and comprehensive simulations of molecular systems. We evaluate our model on the MD17 dataset, demonstrating consistent performance improvements over state-of-the-art baselines across multiple molecules, particularly under challenging conditions such as irregular timestep sampling and long-term prediction horizons. Ablation studies confirm the significant contributions of both spatial and temporal multiscale modeling components. Our method advances the simulation of complex molecular systems, potentially accelerating research in computational chemistry, drug discovery, and materials science.
Related papers
- Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
We present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions.
We also present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics.
arXiv Detail & Related papers (2023-05-29T12:19:41Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
arXiv Detail & Related papers (2022-04-21T18:07:08Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Molecular Latent Space Simulators [8.274472944075713]
We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories.
We demonstrate the approach in an application to Trp-protein to produce novel ultra-long synthetic folding trajectories.
arXiv Detail & Related papers (2020-07-01T20:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.