論文の概要: Is Complexity Important for Philosophy of Mind?
- arxiv url: http://arxiv.org/abs/2112.03877v1
- Date: Tue, 2 Nov 2021 09:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 08:41:55.589300
- Title: Is Complexity Important for Philosophy of Mind?
- Title(参考訳): 複雑性は心の哲学にとって重要であるか?
- Authors: Kristina \v{S}ekrst and Sandro Skansi
- Abstract要約: 本研究の目的は、哲学やAI問題における計算可能性よりも複雑さの重要性を示すことである。
チャーチ・チューリングの論文は、空間的・時間的複雑さのオントロジー的背景を捉えるために再検討され、言い換えられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational complexity has often been ignored in philosophy of mind, in
philosophical artificial intelligence studies. The purpose of this paper is
threefold. First and foremost, to show the importance of complexity rather than
computability in philosophical and AI problems. Second, to rephrase the notion
of computability in terms of solvability, i.e. treating computability as
non-sufficient for establishing intelligence. The Church-Turing thesis is
therefore revisited and rephrased in order to capture the ontological
background of spatial and temporal complexity. Third, to emphasize ontological
differences between different time complexities, which seem to provide a solid
base towards better understanding of artificial intelligence in general.
- Abstract(参考訳): 計算複雑性はしばしば心の哲学や哲学的人工知能研究において無視されている。
本論文の目的は3倍である。
まず第一に、哲学とAIの問題における計算可能性よりも複雑さの重要性を示す。
第二に、計算可能性の概念を可解性という観点から言い換えると、計算可能性は知性を確立するのに十分ではない。
そのため、チャーチ・チューリングの論文は、空間的・時間的複雑さのオントロジー的背景を捉えるために再検討され、言い換えられる。
第3に、異なる時間複雑度間の存在論的差異を強調することは、人工知能全般の理解を深めるための確かな基盤となるように思われる。
関連論文リスト
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
人工知能を作ることの追求は、私たち自身の知性を理解することへの長年の関心を反映している。
最近のAIの進歩は約束を守るが、特異なアプローチはしばしば知性の本質を捉えるのに不足する。
本稿では,生物計算の基本原理が真にインテリジェントなシステムの設計をいかに導くかを検討する。
論文 参考訳(メタデータ) (2024-11-22T02:55:39Z) - On the consistent reasoning paradox of intelligence and optimal trust in AI: The power of 'I don't know' [79.69412622010249]
一貫性推論(Consistent reasoning)は、人間の知性の中心にある、同等のタスクを扱う能力である。
CRPは、一貫性のある推論は誤認を意味する、と論じている。
論文 参考訳(メタデータ) (2024-08-05T10:06:53Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - On the Computational Complexity of Ethics: Moral Tractability for Minds
and Machines [0.0]
倫理領域の問題を解決するために人工知能(AI)が使えるかどうかについての議論は、主に人間の能力の観点からAIができることとできないことによって進められてきた。
本稿では,計算システムにできることやできないことに基づいて,どのようなモラルマシンが可能であるかを検討する。
論文 参考訳(メタデータ) (2023-02-08T17:39:58Z) - Exceeding Computational Complexity Trial-and-Error Dynamic Action and
Intelligence [0.0]
計算複雑性 (Computational complexity) は、計算の難易度を規定する計算機科学のコア理論である。
本稿では,概念を明確にし,不特定型コンピューティング,特化型コンピューティング,コンピュータエージェント,動的検索などの定義を提案する。
また,このフレームワーク,すなわちトライアル・アンド・エラー+動的検索を提案し,議論する。
論文 参考訳(メタデータ) (2022-12-22T21:23:27Z) - End-to-end Algorithm Synthesis with Recurrent Networks: Logical
Extrapolation Without Overthinking [52.05847268235338]
機械学習システムが問題を過度に考えずに論理的外挿を行う方法を示す。
本稿では,問題インスタンスの明示的なコピーをメモリに保持して,それを忘れないようにするリコールアーキテクチャを提案する。
また、モデルが数に固有の行動を学ぶのを防ぎ、無期限に繰り返される行動を学ぶためにモデルをプッシュするプログレッシブトレーニングルーチンも採用しています。
論文 参考訳(メタデータ) (2022-02-11T18:43:28Z) - On Theoretical Complexity and Boolean Satisfiability [0.0]
この論文は、コンピューティング理論において最も中心的な概念をいくつか導入している。
次に,Hhorn-SAT や 3-SAT などの抽出可能な変種を探索する。
最後に,3-SATから有名なNP完全グラフ問題への還元を確立する。
論文 参考訳(メタデータ) (2021-12-22T10:13:34Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
本稿では,LSAT(Law School Admission Test)の3つの課題について,解析的推論,論理的推論,読解の3つの課題について検討する。
本稿では,これら3つのタスクを統合するハイブリッド推論システムを提案する。
論文 参考訳(メタデータ) (2021-08-02T05:43:03Z) - Scientia Potentia Est -- On the Role of Knowledge in Computational
Argumentation [52.903665881174845]
本稿では,計算議論に必要な知識のピラミッドを提案する。
この分野におけるこれらのタイプの役割と統合について,その技術の現状を簡潔に論じる。
論文 参考訳(メタデータ) (2021-07-01T08:12:41Z) - HALMA: Humanlike Abstraction Learning Meets Affordance in Rapid Problem
Solving [104.79156980475686]
人間は自然主義的タスクの構造に応じて構成的および因果的抽象化、つまり知識を学ぶ。
エージェントがその知識をどのように表現するかには、知覚、概念、アルゴリズムの3段階の一般化がある、と我々は主張する。
このベンチマークは、ビジュアルコンセプト開発と迅速な問題解決のための新しいタスクドメイン、HALMAを中心にしています。
論文 参考訳(メタデータ) (2021-02-22T20:37:01Z) - Symbolic Logic meets Machine Learning: A Brief Survey in Infinite
Domains [12.47276164048813]
推論と帰納の緊張は、おそらく哲学、認知、人工知能といった分野において最も根本的な問題である。
本稿では,論理の限界に対する見解に挑戦する結果について報告し,無限領域での学習において論理が果たす役割を明らかにする。
論文 参考訳(メタデータ) (2020-06-15T15:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。