論文の概要: Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds
- arxiv url: http://arxiv.org/abs/2112.09117v1
- Date: Thu, 16 Dec 2021 18:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 16:53:47.264522
- Title: Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds
- Title(参考訳): 機械学習 Kreuzer-Skarke Calabi--Yau Threefolds
- Authors: Per Berglund, Ben Campbell, Vishnu Jejjala
- Abstract要約: Kreuzer-Skarke データベースから反射性ポリトープに付随するトーリック多様体の超曲面として構築されたカラビ-ヤウ多様体の位相不変性について検討する。
ポリトープとその双対から抽出された限られたデータの観点から学習できるオイラー数に対する単純表現の存在を見いだす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using a fully connected feedforward neural network we study topological
invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in
toric varieties associated with reflexive polytopes from the Kreuzer--Skarke
database. In particular, we find the existence of a simple expression for the
Euler number that can be learned in terms of limited data extracted from the
polytope and its dual.
- Abstract(参考訳): 完全連結フィードフォワードニューラルネットワークを用いて、Kreuzer-Skarkeデータベースから反射性ポリトープに関連付けられたトーリック多様体の超曲面として構築されたカラビ-ヤウ多様体の位相不変性を研究する。
特に、ポリトープとその双対から抽出された限られたデータの観点から学習できるオイラー数に対する単純な式が存在することが分かる。
関連論文リスト
- A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
本稿ではReLUのような非微分可能活性化関数の事例について検討する。
最近の2つの研究は、ニューラルネットワークを研究するための幾何学的枠組みを導入した。
本稿では,画像の分類と熱力学問題に関する数値実験を行った。
論文 参考訳(メタデータ) (2024-04-09T08:11:46Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Neural Polytopes [0.0]
ReLUを活性化した単純なニューラルネットワークは、様々な次元の単位球の近似としてポリトープを生成する。
様々な活性化関数に対して、ニューラルポリトープと呼ばれるポリトープの一般化が得られる。
論文 参考訳(メタデータ) (2023-07-03T03:00:22Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
まず、3層ニューラルネットワークがコンパクトな集合上のインジケータ関数を近似するように設計可能であることを示す。
その後、これは単純複体へと拡張され、その位相構造に基づいて幅の上界が導かれる。
トポロジカルアプローチを用いて3層ReLUネットワークの普遍近似特性を証明した。
論文 参考訳(メタデータ) (2023-05-25T14:17:15Z) - Machine Learned Calabi-Yau Metrics and Curvature [0.0]
リッチ・フラット(カラビ・ヤウ)計量の発見は、弦理論や現象学に深い意味を持つ幾何学における長期的問題である。
この問題に対する新たな攻撃は、ニューラルネットワークを使用して、与えられたK"ahlerクラス内のカラビ・ヤウ計量への近似を工学する。
論文 参考訳(メタデータ) (2022-11-17T18:59:03Z) - On Rademacher Complexity-based Generalization Bounds for Deep Learning [18.601449856300984]
Rademacherの複雑性に基づくアプローチは、畳み込みニューラルネットワーク(CNN)上の非空の一般化バウンダリを生成することができることを示す。
以上の結果から,ReLU,Leaky ReLU,Parametric Rectifier Linear Unit,Sigmoid,Tanhなどの特別なアクティベーション機能を持つCNNのネットワーク長に依存しないことがわかった。
論文 参考訳(メタデータ) (2022-08-08T17:24:04Z) - Krylov complexity and orthogonal polynomials [30.445201832698192]
クリロフ複雑性(Krylov complexity)は、ハイゼンベルク時間発展に適応した基底に関して作用素の成長を測定する。
この基底の構成はランツォの帰納法に依存している。
論文 参考訳(メタデータ) (2022-05-25T14:40:54Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
我々は[DOI40103/PhysRevLett.123.140]の量子三角形分布の族が、元の証明よりも広い範囲の三角形局所モデルを認めていないことを示した。
我々は、独立な利害関係を持つ二項結果を持つ三角形のシナリオに対して、ネットワークベルの不等式を大量に収集する。
論文 参考訳(メタデータ) (2022-03-30T18:00:00Z) - Generative Quantum Learning of Joint Probability Distribution Functions [1.221966660783828]
我々はコプラをモデル化するための量子機械学習アルゴリズムを設計する。
任意のコプラを最大交絡状態に自然にマッピングできることが示される。
変分 ansatz を qopula' として定義すると、変数間の任意の相関が生成される。
論文 参考訳(メタデータ) (2021-09-13T20:50:15Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z) - Differentiating through the Fr\'echet Mean [51.32291896926807]
フレット平均(Fr'echet mean)はユークリッド平均の一般化である。
任意のリーマン多様体に対して Fr'echet 平均を微分する方法を示す。
これにより、Fr'echet平均を双曲型ニューラルネットワークパイプラインに完全に統合する。
論文 参考訳(メタデータ) (2020-02-29T19:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。