論文の概要: Verification of Neural-Network Control Systems by Integrating Taylor
Models and Zonotopes
- arxiv url: http://arxiv.org/abs/2112.09197v1
- Date: Thu, 16 Dec 2021 20:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-20 15:43:12.624047
- Title: Verification of Neural-Network Control Systems by Integrating Taylor
Models and Zonotopes
- Title(参考訳): Taylor モデルとzonotope の統合によるニューラルネットワーク制御システムの検証
- Authors: Christian Schilling, Marcelo Forets, Sebastian Guadalupe
- Abstract要約: ニューラルネットワークコントローラ(NNCS)を用いた閉ループ力学系の検証問題について検討する。
本稿では,Taylorモデルとzonotopesに基づくアプローチをチェーンするアルゴリズムを提案し,NNCSの精度の高い到達性アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the verification problem for closed-loop dynamical systems with
neural-network controllers (NNCS). This problem is commonly reduced to
computing the set of reachable states. When considering dynamical systems and
neural networks in isolation, there exist precise approaches for that task
based on set representations respectively called Taylor models and zonotopes.
However, the combination of these approaches to NNCS is non-trivial because,
when converting between the set representations, dependency information gets
lost in each control cycle and the accumulated approximation error quickly
renders the result useless. We present an algorithm to chain approaches based
on Taylor models and zonotopes, yielding a precise reachability algorithm for
NNCS. Because the algorithm only acts at the interface of the isolated
approaches, it is applicable to general dynamical systems and neural networks
and can benefit from future advances in these areas. Our implementation
delivers state-of-the-art performance and is the first to successfully analyze
all benchmark problems of an annual reachability competition for NNCS.
- Abstract(参考訳): ニューラルネットワークコントローラ(NNCS)を用いた閉ループ力学系の検証問題について検討する。
この問題は通常、到達可能な状態の集合を計算することに還元される。
動的システムとニューラルネットワークを独立に考えると、Taylorモデルとzonotopeと呼ばれるセット表現に基づいて、そのタスクに対して正確なアプローチが存在する。
しかし、nncsへのこれらのアプローチの組み合わせは、集合表現の間で変換すると、各制御サイクルで依存情報が失われ、累積近似誤差がすぐに結果が役に立たなくなるため、自明ではない。
本稿では,Taylorモデルとzonotopesに基づくアプローチをチェーンするアルゴリズムを提案し,NNCSの精度の高い到達性アルゴリズムを提案する。
このアルゴリズムは孤立したアプローチのインターフェースでのみ機能するため、一般的な力学系やニューラルネットワークに適用でき、これらの領域における将来の進歩の恩恵を受けることができる。
我々の実装は最先端のパフォーマンスを提供し、NNCSの年次リーチビリティコンペティションにおける全てのベンチマーク問題を解析した最初のものである。
関連論文リスト
- Interacting Particle Systems on Networks: joint inference of the network
and the interaction kernel [8.535430501710712]
エージェント間の相互作用のルールを決定するネットワークとシステムの重み行列を推論する。
我々は2つのアルゴリズムを使用する: 1つは演算子回帰と呼ばれる新しいアルゴリズムで、最小2乗のデータを交互に更新する。
どちらのアルゴリズムも、識別可能性と適正性を保証するスケーラブルな条件である。
論文 参考訳(メタデータ) (2024-02-13T12:29:38Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
モデル学習と予測制御を統合した新しいフレームワークを提案する。
我々は,既存の最先端手法よりもクローズドループ性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-12-20T06:25:02Z) - SICNN: Soft Interference Cancellation Inspired Neural Network Equalizers [1.6451639748812472]
我々はSICNNと呼ばれる新しいニューラルネットワーク(NN)ベースのアプローチを提案する。
SICNNはモデルに基づく反復型ソフト干渉キャンセル(SIC)法を深く展開して設計されている。
提案したNNベースの等化器のビット誤り率性能と最先端のモデルベースおよびNNベースのアプローチとの比較を行った。
論文 参考訳(メタデータ) (2023-08-24T06:40:54Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
本稿では、ニューラルネットワークコントローラを用いた非線形連続時間力学系の厳密な検証のための区間解析に基づく計算効率の良いフレームワークを提案する。
混合単調理論に着想を得て,ニューラルネットワークの包摂関数と開ループシステムの分解関数を用いて,閉ループ力学をより大きなシステムに組み込む。
埋め込みシステムの単一軌跡を用いて、到達可能な集合の超矩形超近似を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2023-01-19T06:46:36Z) - Backpropagation on Dynamical Networks [0.0]
本稿では,リカレントニューラルネットワークのトレーニングによく使用されるBPTTアルゴリズムに基づくネットワーク推論手法を提案する。
局所ノードダイナミクスの近似は、まずニューラルネットワークを用いて構築される。
得られた局所モデルと重み付けによるフリーラン予測性能は、真のシステムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-07-07T05:22:44Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。