Quantum Computer Benchmarking via Quantum Algorithms
- URL: http://arxiv.org/abs/2112.09457v1
- Date: Fri, 17 Dec 2021 11:54:05 GMT
- Title: Quantum Computer Benchmarking via Quantum Algorithms
- Authors: Konstantinos Georgopoulos and Clive Emary and Paolo Zuliani
- Abstract summary: We present a framework that utilizes quantum algorithms, an architecture aware quantum noise model and an ideal simulator to benchmark quantum computers.
The benchmark metrics highlight the difference between the quantum computer evolution and the simulated noisy and ideal quantum evolutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework that utilizes quantum algorithms, an architecture
aware quantum noise model and an ideal simulator to benchmark quantum
computers. The benchmark metrics highlight the difference between the quantum
computer evolution and the simulated noisy and ideal quantum evolutions. We
utilize our framework for benchmarking three IBMQ systems. The use of multiple
algorithms, including continuous-time ones, as benchmarks stresses the
computers in different ways highlighting their behaviour for a diverse set of
circuits. The complexity of each quantum circuit affects the efficiency of each
quantum computer, with increasing circuit size resulting in more noisy
behaviour. Furthermore, the use of both a continuous-time quantum algorithm and
the decomposition of its Hamiltonian also allows extracting valuable
comparisons regarding the efficiency of the two methods on quantum systems. The
results show that our benchmarks provide sufficient and well-rounded
information regarding the performance of each quantum computer.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Dynamic quantum circuit compilation [11.550577505893367]
Recent advancements in quantum hardware have introduced mid-circuit measurements and resets, enabling the reuse of measured qubits.
We present a systematic study of dynamic quantum circuit compilation, a process that transforms static quantum circuits into their dynamic equivalents.
arXiv Detail & Related papers (2023-10-17T06:26:30Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - VACSEN: A Visualization Approach for Noise Awareness in Quantum
Computing [7.757434376432302]
Quantum computing has attracted considerable public attention due to its exponential speedup over classical computing.
Despite its advantages, today's quantum computers intrinsically suffer from noise and are error-prone.
We propose a novel visualization approach to achieve noise-aware quantum computing.
arXiv Detail & Related papers (2022-07-28T14:57:24Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.