Non-Markovian Quantum Dynamics in Strongly Coupled Multimode Cavities
Conditioned on Continuous Measurement
- URL: http://arxiv.org/abs/2112.09499v2
- Date: Wed, 9 Feb 2022 12:00:33 GMT
- Title: Non-Markovian Quantum Dynamics in Strongly Coupled Multimode Cavities
Conditioned on Continuous Measurement
- Authors: Valentin Link, Kai M\"uller, Rosaria G. Lena, Kimmo Luoma,
Fran\c{c}ois Damanet, Walter T. Strunz, Andrew J. Daley
- Abstract summary: We study how different monitoring for modes of a multimode cavity affects our information gain for an atomic state.
This work opens opportunities to understand continuous monitoring of non-Markovian open quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important challenge in non-Markovian open quantum systems is to understand
what information we gain from continuous measurement of an output field. For
example, atoms in multimode cavity QED systems provide an exciting platform to
study many-body phenomena in regimes where the atoms are strongly coupled
amongst themselves and with the cavity, but the strong coupling makes it
complicated to infer the conditioned state of the atoms from the output light.
In this work we address this problem, describing the reduced atomic state via a
conditioned hierarchy of equations of motion, which provides an exact
conditioned reduced description under monitoring (and continuous feedback). We
utilise this formalism to study how different monitoring for modes of a
multimode cavity affects our information gain for an atomic state, and to
improve spin squeezing via measurement and feedback in a strong coupling
regime. This work opens opportunities to understand continuous monitoring of
non-Markovian open quantum systems, both on a practical and fundamental level.
Related papers
- On the non-Markovian quantum control dynamics [2.0552363908639624]
We study open-loop control and closed-loop measurement feedback control of non-Markovian quantum dynamics.
We use the widely studied quantum cavity electrodynamics (cavity-QED) system as an example.
arXiv Detail & Related papers (2024-08-19T01:47:32Z) - Entangled Matter-waves for Quantum Enhanced Sensing [0.0]
We present a method for creating and controlling entanglement between solely the motional states of atoms in a cavity without the need for electronic interactions.
This system offers a highly tunable, many-body quantum sensor and simulator.
arXiv Detail & Related papers (2024-06-19T15:10:27Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Observation of multiple steady states with engineered dissipation [19.94001756170236]
We introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system.
We find that the information saved in the initial state maintains in the steady state driven by the continuous dissipation on a five-qubit chain.
arXiv Detail & Related papers (2023-08-25T08:06:44Z) - Vibration induced transparency: Simulating an optomechanical system via
the cavity QED setup with a movable atom [3.6034001987137763]
We simulate an optomechanical system via a cavity QED scenario with a movable atom and investigate its application in the tiny mass sensing.
We find that the steady-state solution of the system exhibits a multiple stability behavior, which is similar to that in the optomechanical system.
arXiv Detail & Related papers (2022-09-19T06:20:37Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.