Local-projective-measurement-enhanced quantum battery capacity
- URL: http://arxiv.org/abs/2405.03093v1
- Date: Mon, 6 May 2024 01:11:25 GMT
- Title: Local-projective-measurement-enhanced quantum battery capacity
- Authors: Tinggui Zhang, Hong Yang, Shao-Ming Fei,
- Abstract summary: capacity is an important indicator for a battery.
We study the enhancement of the battery capacity under local projective measurements on a subsystem of the quantum state.
- Score: 13.61700291107261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum batteries have significant potential applications for future industry and daily life. The capacity is an important indicator for a battery. Methods to improve the capacity of quantum batteries are important. We consider quantum batteries given by bipartite quantum systems and study the enhancement of the battery capacity under local projective measurements on a subsystem of the quantum state. By using two-qubit Bell-diagonal states and X-type states as examples, we show that quantum battery capacity with respect to the whole system or a subsystem can be improved by local projective measurements. Our theoretical analysis will provide ideas for the experimental development of quantum batteries.
Related papers
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - Two-photon charging of a quantum battery with a Gaussian pulse envelope [0.0]
We show how an exponential enhancement in stored energy can be achieved with a quantum battery thanks to a two-photon charging protocol.
Our results demonstrate a plausible mechanism for quickly storing a vast amount of energy in a quantum object defined by continuous variables.
arXiv Detail & Related papers (2024-07-09T12:35:29Z) - Entanglement and steering in quantum batteries [0.0]
We introduce quantum steering as a new quantum resource into batteries for the first time.
We analyze the relationship between quantum steering, quantum entanglement, energy storage, and extractable work.
arXiv Detail & Related papers (2024-06-10T15:35:36Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Analytically solvable many-body Rosen-Zener quantum battery [0.0]
How to obtain analytical solutions for quantum battery systems and achieve a full charging is a crucial element of the quantum battery.
Here, we investigate the Rosen-Zener quantum battery with $N$ two-level systems, which includes atomic interactions and external driving field.
arXiv Detail & Related papers (2023-07-13T13:30:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries [1.1768314197952987]
We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise.
Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.
arXiv Detail & Related papers (2022-11-04T18:08:46Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.