論文の概要: Learning Human Motion Prediction via Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2112.11124v1
- Date: Tue, 21 Dec 2021 11:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 20:22:10.888220
- Title: Learning Human Motion Prediction via Stochastic Differential Equations
- Title(参考訳): 確率微分方程式による人間の運動予測の学習
- Authors: Kedi Lyu, Zhenguang Liu, Shuang Wu, Haipeng Chen, Xuhong Zhang, Yuyu
Yin
- Abstract要約: 本稿では,微分方程式と経路積分に基づく動き予測問題をモデル化する新しい手法を提案する。
平均して12.48%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 19.30774202476477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion understanding and prediction is an integral aspect in our
pursuit of machine intelligence and human-machine interaction systems. Current
methods typically pursue a kinematics modeling approach, relying heavily upon
prior anatomical knowledge and constraints. However, such an approach is hard
to generalize to different skeletal model representations, and also tends to be
inadequate in accounting for the dynamic range and complexity of motion, thus
hindering predictive accuracy. In this work, we propose a novel approach in
modeling the motion prediction problem based on stochastic differential
equations and path integrals. The motion profile of each skeletal joint is
formulated as a basic stochastic variable and modeled with the Langevin
equation. We develop a strategy of employing GANs to simulate path integrals
that amounts to optimizing over possible future paths. We conduct experiments
in two large benchmark datasets, Human 3.6M and CMU MoCap. It is highlighted
that our approach achieves a 12.48% accuracy improvement over current
state-of-the-art methods in average.
- Abstract(参考訳): 人間の動きの理解と予測は、マシンインテリジェンスと人間と機械のインタラクションシステムの追求において不可欠な側面です。
現在の手法は通常、事前解剖学的な知識と制約に大きく依存し、運動学モデリングアプローチを追求する。
しかし、このようなアプローチは異なる骨格モデル表現に一般化することは困難であり、運動のダイナミックレンジと複雑さを考慮しても不十分であり、予測精度を損なう傾向がある。
本研究では,確率微分方程式と経路積分に基づく動き予測問題をモデル化する新しい手法を提案する。
各骨格関節の運動プロファイルは基本確率変数として定式化され、ランゲヴィン方程式でモデル化される。
我々はganを用いて将来の経路を最適化する経路積分をシミュレートする手法を開発した。
我々は、Human 3.6MとCMU MoCapという2つの大きなベンチマークデータセットで実験を行う。
提案手法は,現在の最先端手法に比べて平均12.48%の精度向上を実現している。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - A Neuro-Symbolic Approach for Enhanced Human Motion Prediction [5.742409080817885]
人間の動作予測のためのニューロシンボリックアプローチ(NeuroSyM)を提案する。
NeuroSyMは、質的軌道計算(QTC)と呼ばれる空間表現に直感的手法を活用することにより、近隣の相互作用を異なる重み付けする
実験の結果,NeuroSyMアプローチは,ほとんどの場合,予測精度においてベースラインアーキテクチャよりも優れていた。
論文 参考訳(メタデータ) (2023-04-23T20:11:40Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
本研究では,予測課題に対する数値解法と組み合わせた各種動作モデルの性能について検討する。
この研究は、低階積分子モデルのようなより単純なモデルは、正確な予測を達成するために、より複雑な、例えばキネマティックモデルよりも好まれることを示している。
論文 参考訳(メタデータ) (2023-04-11T10:15:20Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
歩行者軌跡予測(STGlow)のための二重グラフマーを用いた新しい生成フローベースフレームワークを提案する。
本手法は,動作の正確なログライクな振る舞いを最適化することにより,基礎となるデータ分布をより正確にモデル化することができる。
いくつかのベンチマークによる実験結果から,本手法は従来の最先端手法に比べて性能が向上することが示された。
論文 参考訳(メタデータ) (2022-11-21T07:29:24Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。