論文の概要: CNOT-count optimized quantum circuit of the Shor's algorithm
- arxiv url: http://arxiv.org/abs/2112.11358v1
- Date: Tue, 21 Dec 2021 16:56:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 22:27:59.393080
- Title: CNOT-count optimized quantum circuit of the Shor's algorithm
- Title(参考訳): ShorアルゴリズムのCNOT数最適化量子回路
- Authors: Xia Liu, Huan Yang and Li Yang
- Abstract要約: 整数分解のためのShorアルゴリズムにおいて最も高価な演算である定数のモジュラー指数化のための改良された量子回路を提案する。
CNOTゲートの数に応じて、イオントラップ量子コンピュータ上でShorのアルゴリズムの実行時間と実現可能性を分析する。
- 参考スコア(独自算出の注目度): 8.88308897530269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present improved quantum circuit for modular exponentiation of a constant,
which is the most expensive operation in Shor's algorithm for integer
factorization. While previous work mostly focuses on minimizing the number of
qubits or the depth of circuit, we try to minimize the number of CNOT gate
which primarily determines the running time on a ion trap quantum computer.
First, we give the implementation of basic arithmetic with known lowest number
of CNOT gate and the construction of improved modular exponentiation of a
constant by accumulating intermediate date and windowing technique. Then, we
precisely estimate the number of improved quantum circuit to perform Shor's
algorithm for factoring a $n$-bit integer, which is
$217\frac{n^3}{\log_2n}+4n^2+n$. According to the number of CNOT gates, we
analyze the running time and feasibility of Shor's algorithm on a ion trap
quantum computer. Finally, we discuss the lower bound of CNOT numbers needed to
implement Shor's algorithm.
- Abstract(参考訳): 整数分解のためのShorアルゴリズムにおいて最も高価な演算である定数のモジュラー指数化のための改良された量子回路を提案する。
従来の研究は主に量子ビット数や回路深さの最小化に重点を置いていたが、イオントラップ量子コンピュータ上での実行時間を決定するCNOTゲートの数を最小化しようとする。
まず、既知の最低数のCNOTゲートによる基本演算の実装と、中間日時およびウィンドウ化手法を付加して定数のモジュラー指数を改良した構成について述べる。
次に,改良量子回路の数を精度良く推定し,217\frac{n^3}{\log_2n}+4n^2+n$のn$ビット整数を分解するshorのアルゴリズムを実行する。
cnotゲートの数に応じて、イオントラップ量子コンピュータ上でのshorのアルゴリズムの実行時間と実行可能性を分析する。
最後に、ショアのアルゴリズムを実装するのに必要なCNOT数の低い境界について論じる。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT回路は一般的な量子回路の共通構成ブロックである。
本稿では,CNOTゲート数を最適化するための最先端アルゴリズムを提案する。
シミュレーション評価により、提案手法はほとんど常に有用であることが示され、CNOTゲートの数を最大10%削減する。
論文 参考訳(メタデータ) (2024-08-07T19:51:22Z) - Fast quantum integer multiplication with zero ancillas [0.5755004576310334]
我々は,ゼロアンシラ量子ビットを用いた準四進時間量子乗法の新しいパラダイムを導入する。
関連するキュービットは入力と出力レジスタ自身のみである。
我々のアルゴリズムは、実際的な問題の大きさよりも優れている可能性がある。
論文 参考訳(メタデータ) (2024-03-26T18:00:03Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - Minimizing CNOT-count in quantum circuit of the extended Shor's
algorithm for ECDLP [8.88308897530269]
イオントラップ量子コンピュータを用いて、改良された量子回路を用いてECDLPのクラックの可能性を分析する。
我々は、素体上の楕円曲線上の離散対数を計算するために、Shorのアルゴリズムを拡張するための正確な量子回路を与える。
イオントラップ量子コンピュータ上でのShorアルゴリズムの動作時間と実現可能性をCNOT数に応じて解析する。
論文 参考訳(メタデータ) (2023-05-19T03:41:13Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
トポロジカルデータ解析のための量子アルゴリズムは、古典的手法よりも指数関数的に有利である。
我々は、量子コンピュータにおいても、TDA(ベッチ数の推定)の中心的なタスクが難解であることを示します。
我々は、入力データが単純さの仕様として与えられると、指数的量子優位性を取り戻すことができると論じる。
論文 参考訳(メタデータ) (2022-09-28T17:53:25Z) - Approximate encoding of quantum states using shallow circuits [0.0]
量子シミュレーションとアルゴリズムの一般的な要件は、2量子ゲートのシーケンスを通して複雑な状態を作成することである。
ここでは、限られた数のゲートを用いて、ターゲット状態の近似符号化を作成することを目的とする。
我々の研究は、局所ゲートを用いて目標状態を作成する普遍的な方法を提供し、既知の戦略よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2022-06-30T18:00:04Z) - Efficient Floating Point Arithmetic for Quantum Computers [1.189955933770711]
量子コンピューティングの大きな約束の1つは、重ね合わせ現象を用いたSIMD(単一命令 - 複数のデータ)演算の実現である。
我々は、符号なし整数量子回路を便利に生成できる半ブールと呼ばれる符号化形式を導入している。
我々は、このタイプの評価を、アンシラのないインプレース乗算や整数係数評価などの追加機能で拡張する。
論文 参考訳(メタデータ) (2021-12-20T14:00:36Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z) - Improved quantum circuits for elliptic curve discrete logarithms [6.058525641792685]
楕円曲線スカラー乗算のための改良された量子回路を提案する。
可逆整数やモジュラ演算などの低レベル成分を最適化する。
Q#量子プログラミング言語における点加算の完全な実装を提供する。
論文 参考訳(メタデータ) (2020-01-27T04:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。