論文の概要: Generalization capabilities of neural networks in lattice applications
- arxiv url: http://arxiv.org/abs/2112.12474v1
- Date: Thu, 23 Dec 2021 11:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-24 14:56:19.476001
- Title: Generalization capabilities of neural networks in lattice applications
- Title(参考訳): 格子応用におけるニューラルネットワークの一般化能力
- Authors: Srinath Bulusu, Matteo Favoni, Andreas Ipp, David I. M\"uller, Daniel
Schuh
- Abstract要約: 翻訳等変ニューラルネットワークを用いた非同変ニューラルネットワークの利点について検討する。
我々の最良の同変アーキテクチャは、その非同変アーキテクチャよりも大幅に性能を向上し、一般化できることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the use of machine learning has become increasingly popular
in the context of lattice field theories. An essential element of such theories
is represented by symmetries, whose inclusion in the neural network properties
can lead to high reward in terms of performance and generalizability. A
fundamental symmetry that usually characterizes physical systems on a lattice
with periodic boundary conditions is equivariance under spacetime translations.
Here we investigate the advantages of adopting translationally equivariant
neural networks in favor of non-equivariant ones. The system we consider is a
complex scalar field with quartic interaction on a two-dimensional lattice in
the flux representation, on which the networks carry out various regression and
classification tasks. Promising equivariant and non-equivariant architectures
are identified with a systematic search. We demonstrate that in most of these
tasks our best equivariant architectures can perform and generalize
significantly better than their non-equivariant counterparts, which applies not
only to physical parameters beyond those represented in the training set, but
also to different lattice sizes.
- Abstract(参考訳): 近年,格子場理論の文脈では,機械学習の利用が盛んに行われている。
このような理論の本質的な要素は対称性によって表現され、ニューラルネットワークの性質を包含することで、性能と一般化可能性の観点から高い報酬が得られる。
通常、周期境界条件を持つ格子上の物理系を特徴づける基本的な対称性は、時空変換の下で同値である。
本稿では、翻訳同値ニューラルネットワークを非同値ニューラルネットワークに導入する利点について考察する。
私たちが考えるシステムは、フラックス表現における二次元格子上の四次相互作用を持つ複素スカラー場であり、ネットワークは様々な回帰および分類タスクを実行する。
確率同変および非同変アーキテクチャは、体系的な探索と同一視される。
これらのタスクのほとんどにおいて、我々の最良の同変アーキテクチャは、トレーニングセットで表されるもの以外の物理パラメータだけでなく、異なる格子サイズにも適用できる、非同変アーキテクチャよりもはるかに優れた性能と一般化を実現できることを実証する。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
回転同変ネットワークは、連結コンパクト群に対して同変である任意のネットワークに対してのみ不変であることを示す。
本稿では, 畳み込み可能な畳み込み型ニューラルネットワークの特徴空間が, 自明な表現であることを示す。
論文 参考訳(メタデータ) (2024-01-17T14:30:46Z) - Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism [12.008737454250463]
本稿では,SU($2$)対称量子多体問題のシミュレーションに広く用いられている融合図を用いて,同変ニューラルネットワークのための新しい同変成分を設計する手法を提案する。
与えられた局所近傍の粒子に適用すると、結果として得られる成分は「融合ブロック」と呼ばれ、任意の連続同変関数の普遍近似として機能する。
我々のアプローチは、テンソルネットワークと同変ニューラルネットワークを組み合わせることで、より表現力のある同変ニューラルネットワークを設計するための有益な方向を示唆している。
論文 参考訳(メタデータ) (2022-11-14T16:06:59Z) - PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
Aggregator Network for Particle Physics [64.5726087590283]
本稿では,全6次元ローレンツ対称性に対して最大で還元された入力の集合を用いた機械学習アーキテクチャを提案する。
結果として得られたネットワークは、モデル複雑さがはるかに低いにもかかわらず、既存の競合相手すべてを上回っていることを示す。
論文 参考訳(メタデータ) (2022-11-01T13:36:50Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
本稿では,グラフ力学ネットワーク(GMN)を提案する。
GMNは、一般化された座標により、構造体の前方運動学情報(位置と速度)を表す。
大規模な実験は、予測精度、制約満足度、データ効率の観点から、最先端のGNNと比較してGMNの利点を支持する。
論文 参考訳(メタデータ) (2022-03-12T14:22:14Z) - Equivariance and generalization in neural networks [0.0]
ネットワーク特性間の翻訳的等式を組み込んだ結果に焦点をあてる。
等変ネットワークの利点は、複素スカラー場の理論を研究することによって実証される。
ほとんどのタスクにおいて、最良の同変アーキテクチャは、非同変アーキテクチャよりもはるかに優れた性能と一般化を達成できる。
論文 参考訳(メタデータ) (2021-12-23T12:38:32Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - Generalization capabilities of translationally equivariant neural
networks [0.0]
本研究では,2次元格子上の複素スカラー場理論に着目し,群同変畳み込みニューラルネットワークアーキテクチャの利点について検討する。
有意義な比較のために、同値および非同値ニューラルネットワークアーキテクチャを体系的に探索し、様々な回帰および分類タスクに適用する。
我々の最善の同変アーキテクチャは、それらの非同変アーキテクチャよりも相当よく機能し、一般化できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T18:53:36Z) - Lorentz Group Equivariant Neural Network for Particle Physics [58.56031187968692]
ローレンツ群の下での変換に関して完全に同値なニューラルネットワークアーキテクチャを提案する。
素粒子物理学における分類問題に対して、そのような同変構造は、比較的学習可能なパラメータの少ない非常に単純なモデルをもたらすことを実証する。
論文 参考訳(メタデータ) (2020-06-08T17:54:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。