Do Majorana zero modes emerge in the hybrid nanowire under a strong
magnetic field?
- URL: http://arxiv.org/abs/2112.13568v1
- Date: Mon, 27 Dec 2021 08:41:46 GMT
- Title: Do Majorana zero modes emerge in the hybrid nanowire under a strong
magnetic field?
- Authors: Guo-Jian Qiao, Sheng-Wen Li and C. P. Sun
- Abstract summary: The hybrid nanowire is expected to serve as an experimental platform to display Majorana zero modes.
The accessible magnetic field range is around 0.1-1.5T; when coupled to aluminum shell, the accessible magnetic field range should be smaller than 0.12T.
- Score: 0.11991823489241997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hybrid nanowire consisting of semiconductor with proximity to
superconductor is expected to serve as an experimental platform to display
Majorana zero modes. By rederiving its effective Kitaev model with spins, we
discover a novel topological phase diagram, which assigns a more precise
constraint on the magnetic field strength for the emergence of Majorana zero
modes. It then turns out the effective pairing strength dressed by the
proximity effect exhibits a significant dependence on the magnetic field, and
thus the topological phase region is refined as a closed triangle in the phase
diagram with chemical potential vs. Zeeman energy(which is obviously different
from the open hyperbolic region known before). This prediction is confirmed
again by an exact calculation of quantum transport, where the zero bias peak of
$2e^{2}/h$ in the differential conductance spectrum, as the necessary evidence
for the Majorana zero modes, disappears when the magnetic field grows too
strong. For illustrations with practical hybrid systems, in the InSb nanowire
coupled to NbTiN, the accessible magnetic field range is around 0.1--1.5T; when
coupled to aluminum shell, the accessible magnetic field range should be
smaller than 0.12T. These predictions obviously clarify the current
controversial issues about some experiments of Majorana zero modes with hybrid
nonawire.
Related papers
- Emergent Majorana metal from a chiral spin liquid [50.56734933757366]
We propose a novel mechanism to explain the emergence of an intermediate gapless spin liquid phase (IGP) in the antiferromagnetic Kitaev model.
We show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projectedangled Pair States (iPEPS) an Entsatz.
arXiv Detail & Related papers (2024-05-20T18:00:01Z) - Quasiparticle effects in magnetic-field-resilient 3D transmons [0.0]
We present measurements of the parity-switching time of a field-resilient 3D transmon with in-plane field up to 0.41T.
We demonstrate that the superconducting-gap asymmetry plays a crucial role in the observed behavior.
We establish that Al-AlO$_x$-Al JJs could be used in architectures for the parity-readout and manipulation of topological qubits.
arXiv Detail & Related papers (2024-03-05T22:37:21Z) - Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at
the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer [7.684562006253786]
We search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale.
The result establishes new bounds for the coupling parameter $f_perp$ within the force range from 5 to 400 $rm mu$m.
arXiv Detail & Related papers (2023-08-04T11:21:41Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Non-Hermitian zero mode laser in a nanophotonic trimer [55.41644538483948]
We report on the direct observation of a lasing zero mode in a non-Hermitian three coupled nanocavity array.
We show efficient excitation for nearly equal pump power in the two extreme cavities.
The realization of zero mode lasing in large arrays of coupled nanolasers has potential applications in laser-mode engineering.
arXiv Detail & Related papers (2023-02-03T15:21:44Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Direct control of high magnetic fields for cold atom experiments based
on NV centers [50.591267188664666]
In cold atomic gases the interactions between the atoms are directly controllable through external magnetic fields.
Here, we overcome the limitations of such an indirect control through a direct feedback scheme.
We achieve a control of better than 1 ppm after 20 minutes of integration time, ensuring high long-term stability for experiments.
arXiv Detail & Related papers (2020-03-18T09:03:25Z) - Temporal and spectral fingerprints of ultrafast all-coherent spin
switching [0.0]
terahertz pulses allow coherent navigation of spins over a potential barrier.
Spin states can be selected by an external magnetic bias.
Switchable spin states can be selected by an external magnetic bias.
arXiv Detail & Related papers (2020-01-17T12:03:45Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.