論文の概要: Bayesian Neural Hawkes Process for Event Uncertainty Prediction
- arxiv url: http://arxiv.org/abs/2112.14474v1
- Date: Wed, 29 Dec 2021 09:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 19:53:54.982422
- Title: Bayesian Neural Hawkes Process for Event Uncertainty Prediction
- Title(参考訳): 事象不確実性予測のためのベイズニューラルホークス過程
- Authors: Manisha Dubey, Ragja Palakkadavath, P.K. Srijith
- Abstract要約: 発生時刻を予測するモデルは、ソーシャルネットワーク、金融取引、ヘルスケア、人間の移動といった様々なアプリケーションにおいて重要な役割を果たす。
最近の研究は、イベントタイムをモデル化するためのニューラルネットワークベースのポイントプロセスを導入し、イベントタイムの予測に最先端のパフォーマンスを提供することを示した。
本稿では,ベイジアンモデルの不確実性モデリング能力とニューラルネットワークの一般化能力を利用する,新しい点過程モデルベイジアン・ニューラルホークス法を提案する。
- 参考スコア(独自算出の注目度): 0.2148535041822524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications comprise of sequences of event data with the time of
occurrence of the events. Models for predicting time of occurrence play a
significant role in a diverse set of applications like social networks,
financial transactions, healthcare, and human mobility. Recent works have
introduced neural network based point process for modeling event-times, and
were shown to provide state-of-the-art performance in predicting event-times.
However, neural networks are poor at quantifying predictive uncertainty and
tend to produce overconfident predictions during extrapolation. A proper
uncertainty quantification is crucial for many practical applications.
Therefore, we propose a novel point process model, Bayesian Neural Hawkes
process which leverages uncertainty modelling capability of Bayesian models and
generalization capability of the neural networks. The model is capable of
predicting epistemic uncertainty over the event occurrence time and its
effectiveness is demonstrated for on simulated and real-world datasets.
- Abstract(参考訳): 多くのアプリケーションは、イベント発生時のイベントデータのシーケンスで構成されている。
発生時刻を予測するモデルは、ソーシャルネットワーク、金融取引、ヘルスケア、人間の移動といった様々なアプリケーションにおいて重要な役割を果たす。
最近の研究は、イベント時間のモデリングのためのニューラルネットワークベースのポイントプロセスを導入し、イベント時間の予測に最先端のパフォーマンスを提供することを示した。
しかし、ニューラルネットワークは予測の不確かさの定量化に乏しく、外挿の間に自信過剰な予測をする傾向がある。
適切な不確実性定量化は多くの実用用途に不可欠である。
そこで本研究では,ベイズモデルの不確実性モデリング能力とニューラルネットワークの一般化能力を利用する,新しい点過程モデルBayesian Neural Hawkesを提案する。
このモデルは事象発生時間に対する認識の不確実性を予測することができ、シミュレーションおよび実世界のデータセット上での有効性を実証する。
関連論文リスト
- Meta-Learning for Neural Network-based Temporal Point Processes [36.31950058651308]
ポイントプロセスは、人間の活動に関連する事象を予測するために広く使われている。
最近の高性能ポイントプロセスモデルでは、長期間にわたって収集された十分な数のイベントを入力する必要がある。
短周期の事象の周期性を考慮した予測のためのメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-01-29T02:42:22Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Variational Neural Temporal Point Process [22.396329275957996]
時間的ポイントプロセスは、どのイベントが発生するか、いつ発生するかを予測するプロセスである。
推論と生成ネットワークを導入し、潜伏変数の分布をトレーニングし、ディープニューラルネットワーク上の特性に対処する。
我々は,これらのモデルが様々なイベントの表現を一般化できることを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-17T13:34:30Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。