The Parametric Cost Function Approximation: A new approach for
multistage stochastic programming
- URL: http://arxiv.org/abs/2201.00258v1
- Date: Sat, 1 Jan 2022 23:25:09 GMT
- Title: The Parametric Cost Function Approximation: A new approach for
multistage stochastic programming
- Authors: Warren B Powell, Saeed Ghadimi
- Abstract summary: We show that a parameterized version of a deterministic optimization model can be an effective way of handling uncertainty without the complexity of either programming or dynamic programming.
This approach can handle complex, high-dimensional state variables, and avoids the usual approximations associated with scenario trees or value function approximations.
- Score: 4.847980206213335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The most common approaches for solving multistage stochastic programming
problems in the research literature have been to either use value functions
("dynamic programming") or scenario trees ("stochastic programming") to
approximate the impact of a decision now on the future. By contrast, common
industry practice is to use a deterministic approximation of the future which
is easier to understand and solve, but which is criticized for ignoring
uncertainty. We show that a parameterized version of a deterministic
optimization model can be an effective way of handling uncertainty without the
complexity of either stochastic programming or dynamic programming. We present
the idea of a parameterized deterministic optimization model, and in particular
a deterministic lookahead model, as a powerful strategy for many complex
stochastic decision problems. This approach can handle complex,
high-dimensional state variables, and avoids the usual approximations
associated with scenario trees or value function approximations. Instead, it
introduces the offline challenge of designing and tuning the parameterization.
We illustrate the idea by using a series of application settings, and
demonstrate its use in a nonstationary energy storage problem with rolling
forecasts.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - A Data-Driven State Aggregation Approach for Dynamic Discrete Choice
Models [7.7347261505610865]
We present a novel algorithm that provides a data-driven method for selecting and aggregating states.
The proposed two-stage approach mitigates the curse of dimensionality by reducing the problem dimension.
We demonstrate the empirical performance of the algorithm in two classic dynamic discrete choice estimation applications.
arXiv Detail & Related papers (2023-04-11T01:07:24Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Variational Nonlinear System Identification [0.8793721044482611]
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem.
We employ a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation.
This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools.
arXiv Detail & Related papers (2020-12-08T05:43:50Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
This paper presents a new variable selection approach integrated with Gaussian process (GP) regression.
The choice of tuning parameters and the accuracy of the estimation are evaluated with the simulation some chosen benchmark approaches.
arXiv Detail & Related papers (2020-08-25T01:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.