論文の概要: FIFA ranking: Evaluation and path forward
- arxiv url: http://arxiv.org/abs/2201.00691v1
- Date: Mon, 20 Dec 2021 21:08:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-09 16:34:12.482247
- Title: FIFA ranking: Evaluation and path forward
- Title(参考訳): FIFAランキング:評価と進路
- Authors: Leszek Szczecinski and Iris-Ioana Roatis
- Abstract要約: 現在使われているパラメータを分析し、そこから導出可能な形式的確率モデルを示し、後者を最適化する。
我々は、1970年に提案されたデービッドソンモデルが優れた候補となるフォーマルなモデリング原理に根ざしたアルゴリズムを仮定する。
その結果,ホームフィールド・アドバンテージとゲーム中のドローの明示的モデルを用いて,アルゴリズムの予測能力が顕著に向上していることが示唆された。
- 参考スコア(独自算出の注目度): 2.050873301895484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we study the ranking algorithm used by F\'ed\'eration
Internationale de Football Association (FIFA); we analyze the parameters it
currently uses, show the formal probabilistic model from which it can be
derived, and optimize the latter. In particular, analyzing the games since the
introduction of the algorithm in 2018, we conclude that the game's "importance"
(as defined by FIFA) used in the algorithm is counterproductive from the point
of view of the predictive capability of the algorithm. We also postulate the
algorithm to be rooted in the formal modelling principle, where the Davidson
model proposed in 1970 seems to be an excellent candidate, preserving the form
of the algorithm currently used. The results indicate that the predictive
capability of the algorithm is notably improved by using the home-field
advantage and the explicit model for the draws in the game. Moderate, but
notable improvement may be attained by introducing the weighting of the results
with the goal differential, which although not rooted in a formal modelling
principle, is compatible with the current algorithm and can be tuned to the
characteristics of the football competition.
- Abstract(参考訳): 本研究では,f\'ed\'eration internationale de football association (fifa) が使用するランキングアルゴリズムを調査し,現在使用しているパラメータを分析し,その導出可能な形式的確率モデルを示し,後者を最適化する。
特に、2018年のアルゴリズム導入以来のゲーム分析において、アルゴリズムで使用されるゲームの「importance」(fifaで定義されている)は、アルゴリズムの予測能力の観点からは非生産的であると結論づけた。
また、1970年に提案されたデービッドソンモデルが優れた候補となり、現在使われているアルゴリズムの形式を保存するという形式的モデリング原理に根ざしたアルゴリズムを仮定する。
その結果,ホームフィールド・アドバンテージとゲーム中のドローの明示的モデルを用いて,アルゴリズムの予測能力が顕著に向上していることが示唆された。
適度だが注目すべき改善は、公式なモデリング原理に根ざしていないが、現在のアルゴリズムと互換性があり、サッカー競技の特徴に合わせて調整できるゴール差によって結果の重み付けを導入することで達成される。
関連論文リスト
- FIVB ranking: Misstep in the right direction [1.4419517737536705]
この研究は統計フレームワークを使用して、F'ed'eration Internationale de Volleyball (FIVB)が2020年から使用しているランキングアルゴリズムを提示し、評価している。
FIVBランキングの健全な特徴は確率モデルを使用することであり、これは今後のゲームの確率を明示的に計算する。
論文 参考訳(メタデータ) (2024-08-02T23:46:55Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Using Knowledge Graphs for Performance Prediction of Modular
Optimization Algorithms [4.060078409841919]
我々は知識グラフ埋め込み手法を用いて性能予測モデルを構築した。
与えられたアルゴリズムのインスタンスが特定の目標精度を達成できるかどうかを正確に予測できる3つの分類手法を示す。
論文 参考訳(メタデータ) (2023-01-24T09:28:57Z) - Simplified Kalman filter for online rating: one-fits-all approach [4.010371060637208]
私たちは、選手/チームのスキルがゲームの観察された結果から推測されるスポーツのレーティングの問題に対処します。
本研究は,ゲーム結果とスキルの関係の確率的モデルを利用して,新たなゲーム後のスキルを推定するオンライン評価アルゴリズムに着目した。
論文 参考訳(メタデータ) (2021-04-28T20:44:10Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
ランダム化アルゴリズムは制約満足度問題 (CSP) やブール満足度問題 (SAT) の多くの最先端の解法で用いられている。
従来の最先端の手法は、入力インスタンスが従う固定パラメトリック分布を直接予測しようとする。
この新モデルは,低観測環境下での堅牢な予測性能と,検閲された観測処理を実現する。
論文 参考訳(メタデータ) (2020-12-14T01:15:39Z) - G-Elo: Generalization of the Elo algorithm by modelling the discretized
margin of victory [2.050873301895484]
ゲームポイント(ゴールなど)の観測値の違いを利用して,1対1のゲームにおける評価チーム(またはプレーヤ)の新たなアルゴリズムを開発する。
本研究の目的は,実装が簡単で直感的に理解できるEloスタイルのアルゴリズムを得ることである。
論文 参考訳(メタデータ) (2020-10-20T03:55:30Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
線形鎖条件ランダム場(CRF)モデルは最も広く使われているニューラルネットワークラベリング手法の1つである。
厳密な確率的推論アルゴリズムは典型的にはCRFモデルの訓練と予測段階に適用される。
CRFモデルに対して並列化可能な近似変分推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T12:18:43Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
本稿では,今後の性能予測を最大化するポリシ勾配アルゴリズムを提案する。
我々のアルゴリズムであるPrognosticatorは2つのオンライン適応手法よりも非定常性に頑健であることを示す。
論文 参考訳(メタデータ) (2020-05-17T03:41:19Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。