Collision Detection: An Improved Deep Learning Approach Using SENet and
ResNext
- URL: http://arxiv.org/abs/2201.04766v1
- Date: Thu, 13 Jan 2022 02:10:14 GMT
- Title: Collision Detection: An Improved Deep Learning Approach Using SENet and
ResNext
- Authors: Aloukik Aditya, Liudu Zhou, Hrishika Vachhani, Dhivya Chandrasekaran
and Vijay Mago
- Abstract summary: In this article, a deep-learning-based model comprising of ResNext architecture with SENet blocks is proposed.
The proposed model outperforms the existing baseline models achieving a ROC-AUC of 0.91 using a significantly less proportion of the GTACrash synthetic data for training.
- Score: 6.736699393205048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent days, with increased population and traffic on roadways, vehicle
collision is one of the leading causes of death worldwide. The automotive
industry is motivated on developing techniques to use sensors and advancements
in the field of computer vision to build collision detection and collision
prevention systems to assist drivers. In this article, a deep-learning-based
model comprising of ResNext architecture with SENet blocks is proposed. The
performance of the model is compared to popular deep learning models like
VGG16, VGG19, Resnet50, and stand-alone ResNext. The proposed model outperforms
the existing baseline models achieving a ROC-AUC of 0.91 using a significantly
less proportion of the GTACrash synthetic data for training, thus reducing the
computational overhead.
Related papers
- Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Optimized Deep Learning Models for Malware Detection under Concept Drift [0.0]
We propose a model-agnostic protocol to improve a baseline neural network against drift.
We show the importance of feature reduction and training with the most recent validation set possible, and propose a loss function named Drift-Resilient Binary Cross-Entropy.
Our improved model shows promising results, detecting 15.2% more malware than a baseline model.
arXiv Detail & Related papers (2023-08-21T16:13:23Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
This paper presents a machine-learning-enhanced longitudinal scanline method to extract vehicle trajectories from high-angle traffic cameras.
The Dynamic Mode Decomposition (DMD) method is applied to extract vehicle strands by decomposing the Spatial-Temporal Map (STMap) into the sparse foreground and low-rank background.
A deep neural network named Res-UNet+ was designed for the semantic segmentation task by adapting two prevalent deep learning architectures.
arXiv Detail & Related papers (2022-01-13T00:49:24Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.